1.Extraction process optimization and content determination of eight nucleosides from Pheretima guillelmi
Quan-Lin YU ; Xue-Chun WU ; Yi QIU ; Jia-Jia SONG ; Qiao-Ping JIANG ; Chang-Sheng SUN ; Jing-Nan WU ; Cheng-Ke CAI ; Hong-Fei WANG
Chinese Traditional Patent Medicine 2024;46(8):2526-2530
AIM To optimize the extraction process for uracil,hypoxanthine,xanthine,uridine,thymine,inosine,guanosine and 2'-deoxyguanosine from Pheretima guillelmi(Michaelsen),and to determine their contents.METHODS With solid-liquid ratio,ultrasonic time and ultrasonic temperature as influencing factors,contents of hypoxanthine and total nucleosides as evaluation indices,the extraction process was optimized by orthogonal test.HPLC was adopted in the content determination of varioud nucleosides,the analysis was performed on a 30℃thermostatic Agilent C18 column(4.6 mm×250 mm,5 μm),with the mobile phase comprising of methanol-water flowing at 1 mL/min in a gradient elution manner,and the detection wavelength was set at 260 nm.RESULTS The optimal conditions were determined to be 1∶250 for solid-liquid ratio,60 min for ultrasonic time,and 60℃for ultrasonic temperature.Eight nucleosides showed good linear relationships within their own ranges(R2>0.999 0),whose average recoveries were 99.11%-103.27%with the RSDs of 0.85%-2.89%.CONCLUSION This stable and reliable method can be used for the extraction and content determination of nucleosides from P.guillelmi.
2.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
3.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
4.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
5.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
6.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
7.Supplementation of Clostridium butyricum Alleviates Vascular Inflammation in Diabetic Mice
Tian ZHOU ; Shuo QIU ; Liang ZHANG ; Yangni LI ; Jing ZHANG ; Donghua SHEN ; Ping ZHAO ; Lijun YUAN ; Lianbi ZHAO ; Yunyou DUAN ; Changyang XING
Diabetes & Metabolism Journal 2024;48(3):390-404
Background:
Gut microbiota is closely related to the occurrence and development of diabetes and affects the prognosis of diabetic complications, and the underlying mechanisms are only partially understood. We aimed to explore the possible link between the gut microbiota and vascular inflammation of diabetic mice.
Methods:
The db/db diabetic and wild-type (WT) mice were used in this study. We profiled gut microbiota and examined the and vascular function in both db/db group and WT group. Gut microbiota was analyzed by 16s rRNA sequencing. Vascular function was examined by ultrasonographic hemodynamics and histological staining. Clostridium butyricum (CB) was orally administered to diabetic mice by intragastric gavage every 2 days for 2 consecutive months. Reactive oxygen species (ROS) and expression of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were detected by fluorescence microscopy. The mRNA expression of inflammatory cytokines was tested by quantitative polymerase chain reaction.
Results:
Compared with WT mice, CB abundance was significantly decreased in the gut of db/db mice, together with compromised vascular function and activated inflammation in the arterial tissue. Meanwhile, ROS in the vascular tissue of db/db mice was also significantly increased. Oral administration of CB restored the protective microbiota, and protected the vascular function in the db/db mice via activating the Nrf2/HO-1 pathway.
Conclusion
This study identified the potential link between decreased CB abundance in gut microbiota and vascular inflammation in diabetes. Therapeutic delivery of CB by gut transplantation alleviates the vascular lesions of diabetes mellitus by activating the Nrf2/HO-1 pathway.
8. The inhibitory effect of Averrhoa carambola DMDD on high glucose-induced endoplasmic reticulum stress IRE1α pathway and inflammation in renal tubular epithelial cell HK-2
Yu-Xiang WANG ; Jing-Xiao XIE ; Xiao-Ping ZHANG ; Chuan-Hao PANG ; Lu WANG ; Qiu-Yan CHEN ; Lin-Qian CHEN ; Ren-Bin HUANG ; Xiao-Jie WEI
Chinese Pharmacological Bulletin 2023;39(7):1270-1275
Aim To investigate the inhibition effect of 2-dodecyl-6-methoxycyclohexa-2, 5-diene-l, 4-dione ( DMDD) on renal tubular epithelial cell HK-2 endo¬plasmic reticulum stress and inflammatory responses induced by high glucose. Methods HK-2 cells were cultured in vitro and divided into normal group, high glucose group, endoplasmic reticulum stress inhibitor 4-PBA group (5 mmoL • L ) , DMDD high, medium and low dose groups (8,4,2 μmol • L
9. Effect of a novel phosphodiesterase type 5 inhibitor, CPD1, on paraquat-induced lung fibrosis in rats
Jie GAO ; Jian WU ; Jie GAO ; Jing ZHANG ; Jian WU ; Jian-Qin YANG ; Hao-Heng QIU ; Zi-Jian ZHAO ; Fang-Hong LI ; Yun-Ping MU
Chinese Pharmacological Bulletin 2023;39(6):1136-1142
Aim To investigate the effects of CPD1, a novel phosphodiesterase 5 inhibitor, on lung pathological phenotype and epithelial-mesenchymal transition of alveolar epithelial cells in lung fibrosis model rats caused by paraquat (PQ). Methods Lung fibrosis model was constructed by a single intraperitoneal injection of PQ (30 mg·kg
10.Exploration and practice of hierarchical training model for improving professional ability of primary pediatricians
Jing ZHU ; Ying HE ; Hong ZHANG ; Jing GAO ; Hongmei DENG ; Ziyu HUA ; Qian CHENG ; Hongmei XU ; Ping LIANG ; Qiu LI
Chinese Journal of Medical Education Research 2023;22(4):602-605
At present, the routine specialized training for primary pediatricians (focusing on theoretical learning of public subjects) cannot meet the needs of primary pediatricians. In order to promote the development of children's medical care at the grassroots level and improve the quality, medical and clinical research abilities of regional pediatric medical personnel, the Children's Hospital of Chongqing Medical University has designed and built a "hierarchical training model for improving the professional ability of pediatricians" from the aspects of training objectives, training contents, training methods, construction and evaluation of training programs, and quality control. In addition, the 8-month "Pediatric Professional Basic Training" and the 9-month "Pediatric Professional Ability Improvement Training" were respectively carried out in Xianyang Children's Hospital. In the "Professional Basic Training", 88 trainees were comprehensively evaluated after training, 53 of whom were qualified or above. In the "Ability Improvement Training", 26 of the 29 students actually participated in the evaluation and reached the qualified level or above. Learners provided feedbacks that they have effectively improved their own knowledge structure, expanded their clinical diagnosis and treatment thinking and clinical research ideas, and provided some guidance for clinical work.

Result Analysis
Print
Save
E-mail