1.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
2.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
3.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
4.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
5.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
6.Identification of Translocon-associated Protein Delta as An Oncogene in Human Colorectal Cancer Cells
Darshika AMARAKOON ; Wu-Joo LEE ; Jing PENG ; Seong-Ho LEE
Journal of Cancer Prevention 2024;29(4):175-184
Identifying the roles of genes in cancer is critical in discovering potential genetic therapies for cancer care. Translocon-associated protein delta (TRAPδ), also known as signal sequence receptor 4 (SSR4), is a constituent unit in the TRAP/SSR complex that resides in the endoplasmic reticulum and plays a key role in transporting newly synthesized proteins into the endoplasmic reticulumn.However, its biological role in disease development remains unknown to date. This is the first study to identify the role of TRAPδ/ SSR4 in colorectal cancer cells in vitro. Upon successful transient knockdown of TRAPδ/ SSR4, we observed significant reduction of cell viability in all colorectal cancer cell lines tested. Both HCT 116 and SW480 cell lines were significantly arrested at S and G1 phases, while DLD-1 cells were significantly apoptotic. Moreover, TRAPδ/ SSR4 stable knockdown HCT 116 and SW480 cells showed significantly lower viability, anchorage-independent growth, and increased S and G1 phase arrests. Overall, we conclude TRAPδ/ SSR4 is a potential oncogene in human colorectal cancer cells.
7.Identification of Translocon-associated Protein Delta as An Oncogene in Human Colorectal Cancer Cells
Darshika AMARAKOON ; Wu-Joo LEE ; Jing PENG ; Seong-Ho LEE
Journal of Cancer Prevention 2024;29(4):175-184
Identifying the roles of genes in cancer is critical in discovering potential genetic therapies for cancer care. Translocon-associated protein delta (TRAPδ), also known as signal sequence receptor 4 (SSR4), is a constituent unit in the TRAP/SSR complex that resides in the endoplasmic reticulum and plays a key role in transporting newly synthesized proteins into the endoplasmic reticulumn.However, its biological role in disease development remains unknown to date. This is the first study to identify the role of TRAPδ/ SSR4 in colorectal cancer cells in vitro. Upon successful transient knockdown of TRAPδ/ SSR4, we observed significant reduction of cell viability in all colorectal cancer cell lines tested. Both HCT 116 and SW480 cell lines were significantly arrested at S and G1 phases, while DLD-1 cells were significantly apoptotic. Moreover, TRAPδ/ SSR4 stable knockdown HCT 116 and SW480 cells showed significantly lower viability, anchorage-independent growth, and increased S and G1 phase arrests. Overall, we conclude TRAPδ/ SSR4 is a potential oncogene in human colorectal cancer cells.
8.Identification of Translocon-associated Protein Delta as An Oncogene in Human Colorectal Cancer Cells
Darshika AMARAKOON ; Wu-Joo LEE ; Jing PENG ; Seong-Ho LEE
Journal of Cancer Prevention 2024;29(4):175-184
Identifying the roles of genes in cancer is critical in discovering potential genetic therapies for cancer care. Translocon-associated protein delta (TRAPδ), also known as signal sequence receptor 4 (SSR4), is a constituent unit in the TRAP/SSR complex that resides in the endoplasmic reticulum and plays a key role in transporting newly synthesized proteins into the endoplasmic reticulumn.However, its biological role in disease development remains unknown to date. This is the first study to identify the role of TRAPδ/ SSR4 in colorectal cancer cells in vitro. Upon successful transient knockdown of TRAPδ/ SSR4, we observed significant reduction of cell viability in all colorectal cancer cell lines tested. Both HCT 116 and SW480 cell lines were significantly arrested at S and G1 phases, while DLD-1 cells were significantly apoptotic. Moreover, TRAPδ/ SSR4 stable knockdown HCT 116 and SW480 cells showed significantly lower viability, anchorage-independent growth, and increased S and G1 phase arrests. Overall, we conclude TRAPδ/ SSR4 is a potential oncogene in human colorectal cancer cells.
9.Metformin and statins reduce hepatocellular carcinoma risk in chronic hepatitis C patients with failed antiviral therapy
Pei-Chien TSAI ; Chung-Feng HUANG ; Ming-Lun YEH ; Meng-Hsuan HSIEH ; Hsing-Tao KUO ; Chao-Hung HUNG ; Kuo-Chih TSENG ; Hsueh-Chou LAI ; Cheng-Yuan PENG ; Jing-Houng WANG ; Jyh-Jou CHEN ; Pei-Lun LEE ; Rong-Nan CHIEN ; Chi-Chieh YANG ; Gin-Ho LO ; Jia-Horng KAO ; Chun-Jen LIU ; Chen-Hua LIU ; Sheng-Lei YAN ; Chun-Yen LIN ; Wei-Wen SU ; Cheng-Hsin CHU ; Chih-Jen CHEN ; Shui-Yi TUNG ; Chi‐Ming TAI ; Chih-Wen LIN ; Ching-Chu LO ; Pin-Nan CHENG ; Yen-Cheng CHIU ; Chia-Chi WANG ; Jin-Shiung CHENG ; Wei-Lun TSAI ; Han-Chieh LIN ; Yi-Hsiang HUANG ; Chi-Yi CHEN ; Jee-Fu HUANG ; Chia-Yen DAI ; Wan-Long CHUNG ; Ming-Jong BAIR ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(3):468-486
Background/Aims:
Chronic hepatitis C (CHC) patients who failed antiviral therapy are at increased risk for hepatocellular carcinoma (HCC). This study assessed the potential role of metformin and statins, medications for diabetes mellitus (DM) and hyperlipidemia (HLP), in reducing HCC risk among these patients.
Methods:
We included CHC patients from the T-COACH study who failed antiviral therapy. We tracked the onset of HCC 1.5 years post-therapy by linking to Taiwan’s cancer registry data from 2003 to 2019. We accounted for death and liver transplantation as competing risks and employed Gray’s cumulative incidence and Cox subdistribution hazards models to analyze HCC development.
Results:
Out of 2,779 patients, 480 (17.3%) developed HCC post-therapy. DM patients not using metformin had a 51% increased risk of HCC compared to non-DM patients, while HLP patients on statins had a 50% reduced risk compared to those without HLP. The 5-year HCC incidence was significantly higher for metformin non-users (16.5%) versus non-DM patients (11.3%; adjusted sub-distribution hazard ratio [aSHR]=1.51; P=0.007) and metformin users (3.1%; aSHR=1.59; P=0.022). Statin use in HLP patients correlated with a lower HCC risk (3.8%) compared to non-HLP patients (12.5%; aSHR=0.50; P<0.001). Notably, the increased HCC risk associated with non-use of metformin was primarily seen in non-cirrhotic patients, whereas statins decreased HCC risk in both cirrhotic and non-cirrhotic patients.
Conclusions
Metformin and statins may have a chemopreventive effect against HCC in CHC patients who failed antiviral therapy. These results support the need for personalized preventive strategies in managing HCC risk.
10.The Influence of Family Adversities on Longitudinal Changes in Physical Inactivity Among Korean Adolescents During the COVID-19 Pandemic
Tae Kyoung LEE ; Jing ZHU ; Young Mi KIM ; Ze-Kai JIANG ; Meilin ZHANG ; Won Ha CHOI ; Tae-Young PAK ; Hana SONG
Journal of Preventive Medicine and Public Health 2024;57(5):443-450
Objectives:
Lack of physical activity has a critical effect on the physical and mental health of adolescents. This study examined the influence of family adversities on the longitudinal changes in physical inactivity among adolescents during the coronavirus disease 2019 (COVID-19) pandemic.
Methods:
The study used multi-wave data from the Korean Children and Youth Panel Survey, including 2590 Korean adolescents aged 12-14 years. The longitudinal trajectory of physical inactivity among adolescents and the effects of related factors were estimated using a latent growth modeling method.
Results:
Our results revealed a significant increase in physical inactivity among adolescents over time. At the onset of the pandemic, approximately one-seventh of Korean middle schoolers reported a lack of physical activity. However, 3 years later, during the quarantine, nearly one-fifth of these adolescents reported a significant increase in their physical inactivity. Initially, low level parental education was predictive of adolescents’ physical inactivity, but this effect diminished over time, becoming statistically insignificant by the end of the 3-year period. Moreover, the increase in physical inactivity over the 3 years was significantly influenced by parental rejection.
Conclusions
These findings suggest that adolescents who experience parental rejection are more likely to report an increase in sedentary behaviors in contexts such as the COVID-19 pandemic.

Result Analysis
Print
Save
E-mail