1.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
2.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.
3.Clinical Practice Guidelines for Dementia: Recommendations for Cholinesterase Inhibitors and Memantine
Yeshin KIM ; Dong Woo KANG ; Geon Ha KIM ; Ko Woon KIM ; Hee-Jin KIM ; Seunghee NA ; Kee Hyung PARK ; Young Ho PARK ; Gihwan BYEON ; Jeewon SUH ; Joon Hyun SHIN ; YongSoo SHIM ; YoungSoon YANG ; Yoo Hyun UM ; Seong-il OH ; Sheng-Min WANG ; Bora YOON ; Sun Min LEE ; Juyoun LEE ; Jin San LEE ; Jae-Sung LIM ; Young Hee JUNG ; Juhee CHIN ; Hyemin JANG ; Miyoung CHOI ; Yun Jeong HONG ; Hak Young RHEE ; Jae-Won JANG ;
Dementia and Neurocognitive Disorders 2025;24(1):1-23
Background:
and Purpose: This clinical practice guideline provides evidence-based recommendations for treatment of dementia, focusing on cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists for Alzheimer’s disease (AD) and other types of dementia.
Methods:
Using the Population, Intervention, Comparison, Outcomes (PICO) framework, we developed key clinical questions and conducted systematic literature reviews. A multidisciplinary panel of experts, organized by the Korean Dementia Association, evaluated randomized controlled trials and observational studies. Recommendations were graded for evidence quality and strength using Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.
Results:
Three main recommendations are presented: (1) For AD, cholinesterase inhibitors (donepezil, rivastigmine, galantamine) are strongly recommended for improving cognition and daily function based on moderate evidence; (2) Cholinesterase inhibitors are conditionally recommended for vascular dementia and Parkinson’s disease dementia, with a strong recommendation for Lewy body dementia; (3) For moderate to severe AD, NMDA receptor antagonist (memantine) is strongly recommended, demonstrating significant cognitive and functional improvements. Both drug classes showed favorable safety profiles with manageable side effects.
Conclusions
This guideline offers standardized, evidence-based pharmacologic recommendations for dementia management, with specific guidance on cholinesterase inhibitors and NMDA receptor antagonists. It aims to support clinical decision-making and improve patient outcomes in dementia care. Further updates will address emerging treatments, including amyloid-targeting therapies, to reflect advances in dementia management.
4.Erratum to "Investigating the Immune-Stimulating Potential of β-Glucan from Aureobasidium pullulans in Cancer Immunotherapy" Biomol Ther 32(5), 556-567 (2024)
Jae-Hyeon JEONG ; Dae-Joon KIM ; Seong-Jin HONG ; Jae-Hee AHN ; Dong-Ju LEE ; Ah-Ra JANG ; Sungyun KIM ; Hyun-Jong CHO ; Jae-Young LEE ; Jong-Hwan PARK ; Young-Min KIM ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(1):233-233
5.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
6.Explainability Enhanced Machine Learning Model for Classifying Intellectual Disability and AttentionDeficit/Hyperactivity Disorder With Psychological Test Reports
Tong Min KIM ; Young-Hoon KIM ; Sung-Hee SONG ; In-Young CHOI ; Dai-Jin KIM ; Taehoon KO
Journal of Korean Medical Science 2025;40(11):e26-
Background:
Psychological test reports are essential in assessing intellectual functioning, aiding in diagnosing and treating intellectual disability (ID) and attention-deficit/ hyperactivity disorder (ADHD). However, these reports can have several problems because they are diverse, unstructured, subjective, and involve human errors. Additionally, physicians often do not read the entire report, and the number of reports is lower than that of diagnoses.
Methods:
We developed explainable predictive models for classifying IDs and ADHDs based on written reports to address these issues. The reports of 1,475 patients with IDs and ADHDs who underwent intelligence tests were used for the models. These models were developed by analyzing reports using natural language processing (NLP) and incorporating the physician’s diagnosis for each report. We selected n-gram features from the models’ results by extracting important features using SHapley Additive exPlanations and permutation importance to make the models explainable. Developing the n-gram feature-based original text search system compensated for the lack of human readability caused by NLP and enabled the reconstruction of human-readable texts from the selected n-gram features.
Results:
The maximum model accuracy was 0.92, and the 80 human-readable texts were restored from four models.
Conclusion
The results showed that the models could accurately classify IDs and ADHDs, even with a few reports. The models were also able to explain their predictions. The explainability-enhanced model can help physicians understand the classification process of IDs and ADHDs and provide evidence-based insights.
7.Rapid Recovery From SARS-CoV-2Infection Among Immunocompromised Children Despite Limited Neutralizing Antibody Response: A Virologic and Sero-Immunologic Analysis of a Single-Center Cohort
Doo Ri KIM ; Byoung Kwon PARK ; Jin Yang BAEK ; Areum SHIN ; Ji Won LEE ; Hee Young JU ; Hee Won CHO ; Keon Hee YOO ; Ki Woong SUNG ; Chae-Hong JEONG ; Tae Yeul KIM ; June-Young KOH ; Jae-Hoon KO ; Yae-Jean KIM
Journal of Korean Medical Science 2025;40(12):e52-
Background:
Immunocompromised (IC) pediatric patients are at increased risk of severe acute respiratory syndrome coronavirus 2 infection, but the viral kinetics and seroimmunologic response in pediatric IC patients are not fully understood.
Methods:
From April to June 2022, a prospective cohort study was conducted. IC pediatric patients hospitalized for coronavirus disease 2019 (COVID-19) were enrolled. Serial saliva swab and serum specimens were subjected to reverse transcription polymerase chain reaction assays with mutation sequencing, viral culture, anti-spike-protein, anti-nucleocapsid antibody assays, plaque reduction neutralization test (PRNT) and multiplex cytokine assays.
Results:
Eleven IC children were evaluated. Their COVID-19 symptoms resolved promptly (median, 2.5 days; interquartile range, 2.0–4.3). Saliva swab specimens contained lower viral loads than nasopharyngeal swabs (P = 0.008). All cases were BA.2 infection, and 45.5% tested negative within 14 days by saliva swab from symptom onset. Eight (72.7%) showed a time-dependent increase in BA.2 PRNT titers, followed by rapid waning. Multiplex cytokine assays revealed that monocyte/macrophage activation and Th 1 responses were comparable to those of non-IC adults. Activation of interleukin (IL)-1Ra and IL-6 was brief, and IL-17A was suppressed. Activated interferon (IFN)-γ and IL-18/IL-1F4 signals were observed.
Conclusion
IC pediatric patients rapidly recovered from COVID-19 with low viral loads.Antibody response was limited, but cytokine analysis suggested an enhanced IFN-γ- and IL-18-mediated immune response without excessive activation of inflammatory cascades. To validate our observation, immune cell-based functional studies need to be conducted among IC and non-IC children.
8.Explainability Enhanced Machine Learning Model for Classifying Intellectual Disability and AttentionDeficit/Hyperactivity Disorder With Psychological Test Reports
Tong Min KIM ; Young-Hoon KIM ; Sung-Hee SONG ; In-Young CHOI ; Dai-Jin KIM ; Taehoon KO
Journal of Korean Medical Science 2025;40(11):e26-
Background:
Psychological test reports are essential in assessing intellectual functioning, aiding in diagnosing and treating intellectual disability (ID) and attention-deficit/ hyperactivity disorder (ADHD). However, these reports can have several problems because they are diverse, unstructured, subjective, and involve human errors. Additionally, physicians often do not read the entire report, and the number of reports is lower than that of diagnoses.
Methods:
We developed explainable predictive models for classifying IDs and ADHDs based on written reports to address these issues. The reports of 1,475 patients with IDs and ADHDs who underwent intelligence tests were used for the models. These models were developed by analyzing reports using natural language processing (NLP) and incorporating the physician’s diagnosis for each report. We selected n-gram features from the models’ results by extracting important features using SHapley Additive exPlanations and permutation importance to make the models explainable. Developing the n-gram feature-based original text search system compensated for the lack of human readability caused by NLP and enabled the reconstruction of human-readable texts from the selected n-gram features.
Results:
The maximum model accuracy was 0.92, and the 80 human-readable texts were restored from four models.
Conclusion
The results showed that the models could accurately classify IDs and ADHDs, even with a few reports. The models were also able to explain their predictions. The explainability-enhanced model can help physicians understand the classification process of IDs and ADHDs and provide evidence-based insights.
9.Rapid Recovery From SARS-CoV-2Infection Among Immunocompromised Children Despite Limited Neutralizing Antibody Response: A Virologic and Sero-Immunologic Analysis of a Single-Center Cohort
Doo Ri KIM ; Byoung Kwon PARK ; Jin Yang BAEK ; Areum SHIN ; Ji Won LEE ; Hee Young JU ; Hee Won CHO ; Keon Hee YOO ; Ki Woong SUNG ; Chae-Hong JEONG ; Tae Yeul KIM ; June-Young KOH ; Jae-Hoon KO ; Yae-Jean KIM
Journal of Korean Medical Science 2025;40(12):e52-
Background:
Immunocompromised (IC) pediatric patients are at increased risk of severe acute respiratory syndrome coronavirus 2 infection, but the viral kinetics and seroimmunologic response in pediatric IC patients are not fully understood.
Methods:
From April to June 2022, a prospective cohort study was conducted. IC pediatric patients hospitalized for coronavirus disease 2019 (COVID-19) were enrolled. Serial saliva swab and serum specimens were subjected to reverse transcription polymerase chain reaction assays with mutation sequencing, viral culture, anti-spike-protein, anti-nucleocapsid antibody assays, plaque reduction neutralization test (PRNT) and multiplex cytokine assays.
Results:
Eleven IC children were evaluated. Their COVID-19 symptoms resolved promptly (median, 2.5 days; interquartile range, 2.0–4.3). Saliva swab specimens contained lower viral loads than nasopharyngeal swabs (P = 0.008). All cases were BA.2 infection, and 45.5% tested negative within 14 days by saliva swab from symptom onset. Eight (72.7%) showed a time-dependent increase in BA.2 PRNT titers, followed by rapid waning. Multiplex cytokine assays revealed that monocyte/macrophage activation and Th 1 responses were comparable to those of non-IC adults. Activation of interleukin (IL)-1Ra and IL-6 was brief, and IL-17A was suppressed. Activated interferon (IFN)-γ and IL-18/IL-1F4 signals were observed.
Conclusion
IC pediatric patients rapidly recovered from COVID-19 with low viral loads.Antibody response was limited, but cytokine analysis suggested an enhanced IFN-γ- and IL-18-mediated immune response without excessive activation of inflammatory cascades. To validate our observation, immune cell-based functional studies need to be conducted among IC and non-IC children.
10.Impact of HER2-Low Status on Pathologic Complete Response and Survival Outcome Among Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy
Young Joo LEE ; Tae-Kyung YOO ; Sae Byul LEE ; Il Yong CHUNG ; Hee Jeong KIM ; Beom Seok KO ; Jong Won LEE ; Byung Ho SON ; Sei Hyun AHN ; Hyehyun JEONG ; Jae Ho JUNG ; Jin-Hee AHN ; Kyung Hae JUNG ; Sung-Bae KIM ; Hee Jin LEE ; Gyungyub GONG ; Jisun KIM
Journal of Breast Cancer 2025;28(1):11-22
Purpose:
This study analyzed the pathological complete response (pCR) rates, long-term outcomes, and biological features of human epidermal growth factor receptor 2 (HER2)-zero, HER2-low, and HER2-positive breast cancer patients undergoing neoadjuvant treatment.
Methods:
This single-center study included 1,667 patients who underwent neoadjuvant chemotherapy from 2008 to 2014. Patients were categorized by HER2 status, and their clinicopathological characteristics, chemotherapy responses, and recurrence-free survival (RFS) rates were analyzed.
Results:
Patients with HER2-low tumors were more likely to be older (p = 0.081), have a lower histological grade (p < 0.001), and have hormone receptor (HorR)-positive tumors (p < 0.001). The HER2-positive group exhibited the highest pCR rate (23.3%), followed by the HER2-zero (15.5%) and HER2-low (10.9%) groups. However, the pCR rate did not differ between HER2-low and HER2-zero tumors in the HorR-positive or HorR-negative subgroups.The 5-year RFS rates increased in the following order: HER2-low, HER2-positive, and HER2-zero (80.0%, 77.5%, and 74.5%, respectively) (log-rank test p = 0.017). A significant survival difference between patients with HER2-low and HER2-zero tumors was only identified in HorR-negative tumors (5-year RFS for HER2-low, 74.5% vs. HER2-zero, 66.0%; log-rank test p-value = 0.04). Multivariate survival analysis revealed that achieving a pCR was the most significant factor associated with improved survival (hazard ratio [HR], 4.279; p < 0.001).Compared with HER2-zero, the HRs for HER2-low and HER2-positive tumors were 0.787 (p = 0.042) and 0.728 (p = 0.005), respectively. After excluding patients who received HER2-targeted therapy, patients with HER2-low tumors exhibited better RFS than those with HER2-zero (HR 0.784, p = 0.04), whereas those with HER2-positive tumors exhibited no significant difference compared with those with HER2-low tumors (HR, 0.975; p = 0.953).
Conclusion
Patients with HER2-low tumors had no significant difference in pCR rate compared to HER2-zero but showed better survival, especially in HorR-negative tumors.Further investigation into biological differences is warranted.

Result Analysis
Print
Save
E-mail