1.Current Status and Prospects of Research on the Potential Neurobiological Mechanisms of Acupuncture in the Treatment of Tobacco Dependence
Shumin CHEN ; Jin CHANG ; Chaoren TAN ; Hao ZHU ; Jinsheng YANG ; Zhao LIU ; Yingying WANG
Journal of Traditional Chinese Medicine 2025;66(4):421-426
This paper comprehensively discusses on the potential neurobiological mechanisms of acupuncture in the treatment of tobacco dependence, focusing on three important aspects, including acupuncture's regulation of tobacco dependence behavior, effects of acupuncture on withdrawal syndrome, and the role of acupuncture in preventing relapse. It is found that acupuncture can inhibit drug-seeking behavior by regulating the reward pathway and related neurons, such as dopamine, thus modulating tobacco dependence behavior. It also alleviates withdrawal symptoms by improving the oral environment of smokers and reducing negative emotions after quitting. Furthermore, acupuncture can prevent relapse by decreasing brain network activity related to smoking cravings and improving cognitive brain functions like addiction memory. Currently, research on the specific neurobiological mechanism of acupuncture in treating tobacco dependence and the involved neural circuits is limited. Future research directions are proposed, including the evaluation of clinical effects, exploration of specific therapeutic mechanisms, investigation of brain pathology, and strengthening the exploration of brain functions. Additionally, combining modern technologies to clarify the neural circuits involved in acupuncture intervention will provide a basis for acupuncture treatment of tobacco addiction.
2.Analysis of Differential Compounds of Poria cocos Medicinal Materials by Integrated Qualitative Strategy Based on UPLC-Q-Orbitrap-MS
Jiayuan WANG ; Xiaohan FAN ; Xiaoxiao WEI ; Rong CAO ; Jin WANG ; Lei WANG ; Fengqing XU ; Shunwang HUANG ; Deling WU ; Hongsu ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):148-156
ObjectiveTo establish a rapid analytical method for identifying the differential components in Poria cocos medicinal materials based on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), combined with mass defect filtering(MDF) and molecular network integration techniques. MethodsUPLC-Q-Orbitrap-MS was used for MS data acquisition and identification of P. cocos medicinal materials, with the help of MDF for the study of cleavage behavior and structural identification of triterpenoids. According to the similarity of MS/MS fragmentation patterns of each component, global natural product social molecular network(GNPS) was established, and Cytoscape 3.6.1 was used to screen molecular clusters with similar structures and the the structure of main compound classes were identified and confirmed. Multivariate statistical analyses such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen the differential components of the five P. cocos medicinal materials with the variable importance in the projection(VIP) value>1 and P<0.05 as the criteria. ResultsA total of 66 compounds were identified by database comparison, 8 compounds were newly identified by MDF, 28 compounds were newly identified by GNPS, and a total of 102 chemical compounds were identified, including 43 triterpenoids, 16 saccharides, 26 amino acids and peptides, 3 nucleosides, and 14 other compounds. Triterpenoids were predominant in Poriae Cutis and wild Fushen, amino acids and peptides were the most abundant in Poria and cultivated Fushen, carbohydrates were the most abundant in Poriae Cutis. Type Ⅰ and Ⅱ triterpenoids had higher amounts in Poria and cultivated Fushen, type Ⅲ triterpenoids were more abundant in Poriae Cutis, all four types of triterpenoids were higher in Fushenmu, and type Ⅰ, Ⅱ, and Ⅳ triterpenoids were higher in wild Fushen. A total of 12 common differential chemical constituents were screened, including serine, guanosine, gallic acid, 2-octenal, maltotriose, trametenolic acid, dehydroeburicoic acid, dehydrotrametenolic acid, poricoic acid A, poricoic acid B, poricoic acid E and G, but the relative contents of them varied significantly among different medicinal materials. ConclusionAmong the five P. cocos medicinal materials, the types of constituents are generally similar, but their relative contents differed significantly among these medicinal materials, especially in the distribution of triterpenoids. The integration of UPLC-Q-Orbitrap-MS, MDF and GNPS can provide a reference for the rapid qualitative analysis of other Chinese medicines.
3.Analysis of Differential Compounds of Poria cocos Medicinal Materials by Integrated Qualitative Strategy Based on UPLC-Q-Orbitrap-MS
Jiayuan WANG ; Xiaohan FAN ; Xiaoxiao WEI ; Rong CAO ; Jin WANG ; Lei WANG ; Fengqing XU ; Shunwang HUANG ; Deling WU ; Hongsu ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):148-156
ObjectiveTo establish a rapid analytical method for identifying the differential components in Poria cocos medicinal materials based on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), combined with mass defect filtering(MDF) and molecular network integration techniques. MethodsUPLC-Q-Orbitrap-MS was used for MS data acquisition and identification of P. cocos medicinal materials, with the help of MDF for the study of cleavage behavior and structural identification of triterpenoids. According to the similarity of MS/MS fragmentation patterns of each component, global natural product social molecular network(GNPS) was established, and Cytoscape 3.6.1 was used to screen molecular clusters with similar structures and the the structure of main compound classes were identified and confirmed. Multivariate statistical analyses such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen the differential components of the five P. cocos medicinal materials with the variable importance in the projection(VIP) value>1 and P<0.05 as the criteria. ResultsA total of 66 compounds were identified by database comparison, 8 compounds were newly identified by MDF, 28 compounds were newly identified by GNPS, and a total of 102 chemical compounds were identified, including 43 triterpenoids, 16 saccharides, 26 amino acids and peptides, 3 nucleosides, and 14 other compounds. Triterpenoids were predominant in Poriae Cutis and wild Fushen, amino acids and peptides were the most abundant in Poria and cultivated Fushen, carbohydrates were the most abundant in Poriae Cutis. Type Ⅰ and Ⅱ triterpenoids had higher amounts in Poria and cultivated Fushen, type Ⅲ triterpenoids were more abundant in Poriae Cutis, all four types of triterpenoids were higher in Fushenmu, and type Ⅰ, Ⅱ, and Ⅳ triterpenoids were higher in wild Fushen. A total of 12 common differential chemical constituents were screened, including serine, guanosine, gallic acid, 2-octenal, maltotriose, trametenolic acid, dehydroeburicoic acid, dehydrotrametenolic acid, poricoic acid A, poricoic acid B, poricoic acid E and G, but the relative contents of them varied significantly among different medicinal materials. ConclusionAmong the five P. cocos medicinal materials, the types of constituents are generally similar, but their relative contents differed significantly among these medicinal materials, especially in the distribution of triterpenoids. The integration of UPLC-Q-Orbitrap-MS, MDF and GNPS can provide a reference for the rapid qualitative analysis of other Chinese medicines.
4.Establishment and stress analysis of a finite element model for adolescent cervical disc herniation
Yuxin ZHAO ; Liang LIANG ; Feng JIN ; Yangyang XU ; Zhijie KANG ; Yuan FANG ; Yujie HE ; Xing WANG ; Haiyan WANG ; Xiaohe LI
Chinese Journal of Tissue Engineering Research 2025;29(3):448-454
BACKGROUND:Cervical disc herniation can cause pain in the neck and shoulder area,as well as radiating pain in the upper limbs.The incidence rate is increasing year by year and tends to affect younger individuals.Fully understanding the biomechanical characteristics of the cervical spine in adolescents is of great significance for preventing and delaying the onset of cervical disc herniation in this age group. OBJECTIVE:To reconstruct cervical spine models for both healthy adolescents and adolescent patients with cervical disc herniation utilizing finite element analysis techniques,to analyze the motion range of the C1-T1 cervical vertebrae as well as the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and the cartilage of the small joints. METHODS:A normal adolescent's cervical spine and an adolescent patient with cervical disc herniation were selected in this study.The continuous scan cervical spine CT raw image data were imported into Mimics 21.0 in DICOM format.The C1-T1 vertebrae were reconstructed separately.Subsequently,the established models were imported into the 3-Matic software for disc reconstruction.The perfected models were then imported into Hypermesh software for meshing of the vertebrae,nucleus pulposus,annulus fibrosus,and ligaments,creating valid geometric models.After assigning material properties,the final models were imported into ABAQUS software to observe the joint motion range of the C1-C7 cervical vertebrae segments under different conditions,and to analyze the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and small joint cartilage of each cervical spine segment. RESULTS AND CONCLUSION:(1)In six different conditions,the joint motion range of the C1 vertebra in the cervical spine models of both normal adolescent and adolescent patient with cervical disc herniation was higher than that of the other vertebrae.Additionally,the joint motion range of each cervical spine segment in normal adolescent was greater than that in adolescent patient with cervical disc herniation.(2)In the cervical spine model of normal adolescent,the maximum stress values in the annulus fibrosus and nucleus pulposus were found on the left side during C2-3 flexion conditions(0.43 MPa and 0.17 MPa,respectively).In the cervical spine model of adolescent patient with cervical disc herniation,the maximum stress values were found on the left side during C7-T1 flexion conditions(0.54 MPa and 0.18 MPa,respectively).(3)In the cervical spine model of normal adolescent,the maximum stress value on the endplate was found on the left side of the upper endplate of C3 during flexion conditions(1.46 MPa).In the model of adolescent patient with cervical disc herniation,the maximum stress value on the endplate was found on the left side of the lower endplate of C7 during flexion conditions(1.32 MPa).(4)In the cervical spine model of normal adolescent,the maximum stress value in the small joint cartilage was found in the C2-3 left rotation conditions(0.98 MPa).In adolescent patient with cervical disc herniation,the stress in the small joint cartilage significantly increased under different conditions,especially in C1-2,with the maximum stress found during left flexion(3.50 MPa).(5)It is concluded that compared to normal adolescent,adolescent patient with cervical disc herniation exhibits altered cervical curvature and a decrease in overall joint motion range in the cervical spine.In adolescent with cervical disc herniation,there is a significant increase in stress on the annulus fibrosus,nucleus pulposus,and endplates in the C7-T1 segment.The stress on the left articular cartilage of the C1-2 is notable.Abnormal cervical curvature may be the primary factor causing these stress changes.
5.Yishen Huashi Granules Protect Kidneys of db/db Mice via p38 MAPK Signaling Pathway
Kaidong ZHOU ; Sitong WANG ; Ge JIN ; Yanmo CAI ; Xin ZHOU ; Yunhua LIU ; Xinxue ZHANG ; Min ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):58-68
ObjectiveTo explore the mechanism of Yishen Huashi granules in alleviating renal tubular epithelial cell injury and relieving diabetic kidney disease by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. MethodsThe db/db mice of 12 weeks old were randomly assigned into model , dapagliflozin (1.6 mg·kg-1), and Yishen Huashi granules (4.7 g·kg-1), and db/m mice were used as the control group. The general conditions of mice were observed, and fasting blood glucose and 24-h urinary protein and albumin-to-creatinine ratio (ACR) were measured at weeks 0 and 12 of administration. After 12 weeks of treatment, the levels of serum creatinine (SCr), blood urea (UREA), triglycerides (TG), total cholesterol (TC), and low density lipoprotein (LDL) were measured. The pathological changes in the renal tissue were observed by hematoxylin-eosin (HE) staining, Periodic acid-Schiff (PAS) staining, Mallory staining, and transmission electron microscopy. Real-time PCR was employed to determine the mRNA levels of monocyte chemotactic protein-1 (MCP-1) and CC chemokine receptor-2 (CCR2) in the renal tissue of mice. The immunohistochemical assay was employed to examine the expression of p38, phospho-p38 (p-p38), MCP-1, and CCR2 in the renal tissue of mice. Western blotting was employed to measure the protein levels of p-p38, p38, MCP-1, and CCR2 in the renal tissue of mice.HK-2 cells cultured in vitro were grouped as follows: negative control, high glucose(30 mmol·L-1), Yishen Huashi granule-containing serum, and SB203580. After 48 h of cell culture in each group, RNA were extracted and the levels of MCP-1, and CCR2 mRNA were determined by Real-time PCR,proteins were extracted and the levels of p38, p-p38, MCP-1, and CCR2 were determined by Western blot. ResultsThe in vivo experiments showed that before treatment, other groups had higher body weight, blood glucose level, 24 h urinary protein, and ACR than the control group (P<0.05,P<0.01). After 12 weeks of treatment, compared with the model group, the Yishen Huashi granules group showed improved general conditions, a decreasing trend in body weight, lowered levels of blood glucose, 24-h urinary protein, and ACR (P<0.01), reduced SCr and UREA (P<0.01), and declined levels of TC, TG, and LDL (P<0.05,P<0.01). Compared with the model group, the Yishen Huashi granules group showed alleviated damage and interstitial fibrosis in the renal tissue as well as reductions in glomerular foot process fusion and basement membrane thickening. Moreover, the Yishen Huashi granules group showed down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01), reduced positive expression of p-p38, MCP-1, and CCR2 (P<0.01), and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2 (P<0.05) in the renal tissue. The cell experiment showed that compared with the high glucose group, the Yishen Huashi granule-containing serum group showcased down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01) and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2(P<0.05,P<0.01). ConclusionYishen Huashi granules can regulate glucose-lipid metabolism, reduce 24 h urinary protein and ACR, improve the renal function, alleviate the renal tubule injury caused by high glucose, and protect renal tubule epithelial cells in db/db mice by reducing MCP-1/CCR2 activation via the p38 MAPK signaling pathway.
6.Mid-long term follow-up reports on head and neck rhabdomyosarcoma in children
Chao DUAN ; Sidou HE ; Shengcai WANG ; Mei JIN ; Wen ZHAO ; Xisi WANG ; Zhikai LIU ; Tong YU ; Lejian HE ; Xiaoman WANG ; Chunying CUI ; Xin NI ; Yan SU
Chinese Journal of Pediatrics 2025;63(1):62-69
Objective:To analyze the clinical characteristics of children with head and neck rhabdomyosarcoma (RMS) and to summarize the mid-long term efficacy of Beijing Children′s Hospital Rhabdomyosarcoma 2006 (BCH-RMS-2006) regimen and China Children′s Cancer Group Rhabdomyosarcoma 2016 (CCCG-RMS-2016) regimen.Methods:A retrospective cohort study. Clinical data of 137 children with newly diagnosed head and neck RMS at Beijing Children′s Hospital, Capital Medical University from March 2013 to December 2021 were collected. Clinical characteristic of patients at disease onset and the therapeutic effects of patients treated with the BCH-RMS-2006 and CCCG-RMS-2016 regimens were compared. The treatments and outcomes of patients with recurrence were also summarized. Survival analysis was performed by Kaplan-Meier method, and Log-Rank test was used for comparison of survival rates between groups.Results:Among 137 patients, there were 80 males (58.4%) and 57 females (41.6%), the age of disease onset was 59 (34, 97) months. The primary site in the orbital, non-orbital non-parameningeal, and parameningeal area were 10 (7.3%), 47 (34.3%), and 80 (58.4%), respectively. Of all patients, 32 cases (23.4%) were treated with the BCH-RMS-2006 regimen and 105 (76.6%) cases were treated with the CCCG-RMS-2016 regimen. The follow-up time for the whole patients was 46 (20, 72) months, and the 5-year progression free survival (PFS) and overall survival (OS) rates for the whole children were (60.4±4.4)% and (69.3±4.0)%, respectively. The 5-year OS rate was higher in the CCCG-RMS-2016 group than in BCH-RMS-2006 group ((73.0±4.5)% vs. (56.6±4.4)%, χ2=4.57, P=0.029). For the parameningeal group, the 5-year OS rate was higher in the CCCG-RMS-2016 group (61 cases) than in BCH-RMS-2006 group (19 cases) ((57.3±7.6)% vs. (32.7±11.8)%, χ2=4.64, P=0.031). For the group with meningeal invasion risk factors, the 5-year OS rate was higher in the CCCG-RMS-2016 group (54 cases) than in BCH-RMS-2006 group (15 cases) ((57.7±7.7)% vs. (30.0±12.3)%, χ2=4.76, P=0.029). Among the 10 cases of orbital RMS, there was no recurrence. In the non-orbital non-parameningeal RMS group (47 cases), there were 13 (27.6%) recurrences, after re-treatment, 7 cases survived. In the parameningeal RMS group (80 cases), there were 40 (50.0%) recurrences, with only 7 cases surviving after re-treatment. Conclusions:The overall prognosis for patients with orbital and non-orbital non-parameningeal RMS is good. However, children with parameningeal RMS have a high recurrence rate, and the effectiveness of re-treatment after recurrence is poor. Compared with the BCH-RMS-2006 regimen, the CCCG-RMS-2016 regimen can improve the treatment efficacy of RMS in the meningeal region.
7.History, Experience, Opportunities, and Challenges in Esophageal Cancer Prevention and Treatment in Linxian, Henan Province, A High Incidence Area for Esophageal Cancer
Lidong WANG ; Xiaoqian ZHANG ; Xin SONG ; Xueke ZHAO ; Duo YOU ; Lingling LEI ; Ruihua XU ; Jin HUANG ; Wenli HAN ; Ran WANG ; Qide BAO ; Aifang JI ; Lei MA ; Shegan GAO
Cancer Research on Prevention and Treatment 2025;52(4):251-255
Linxian County in Henan Province, Northern China is known as the region with the highest incidence and mortality rate of esophageal cancer worldwide. Since 1959, the Henan medical team has conducted field work on esophageal cancer prevention and treatment in Linxian. Through three generations of effort exerted by oncologists over 65 years of research on esophageal cancer prevention and treatment in Linxian, the incidence rate of esophageal squamous cell carcinoma in this area has dropped by nearly 50%, and the 5-year survival rate has increased to 40%, reaching the international leading
8.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
9.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
10.Effect of Shenkang Injection on Podocyte Apoptosis and GRP78/CHOP Signaling Pathway in db/db Mice with Diabetic Kidney Disease Based on Endoplasmic Reticulum Stress
Yanmo CAI ; Sitong WANG ; Xin ZHOU ; Ge JIN ; Kaidong ZHOU ; Yunhua LIU ; Fengfeng ZHANG ; Xinxue ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):81-90
ObjectiveTo investigate the mechanism of Shenkang injection in delaying diabetic kidney disease by regulating endoplasmic reticulum stress and attenuating podocyte apoptosis through the Glucose regulated protein 78 ( GRP78 ) / transcription factor C / EBP homologous protein ( CHOP ) signaling pathway (GRP78/CHOP) signaling pathway. MethodsFor the animal experiment, 10 12-week-old db/m mice were selected as a normal group, and 30 12-week-old db/db mice were randomly divided into a model group, a Shenkang injection group (15.6 mL·kg-1), and a dapagliflozin group (1.6 mg·kg-1). To observe the general condition of mice, fasting blood glucose, urinary albumin/urine creatinine (ACR), and 24 h urine protein quantification were detected in each group before drug administration. After 12 weeks of drug treatment, mice were tested for fasting blood glucose, total cholesterol (TC), triglyceride (TG), low-density cholesterol (LDL), ACR, 24 h urine protein quantification, blood creatinine (SCr), and blood urea (UREA). Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy were used to observe the pathologic morphology in renal tissue. Immunohistochemistry was used to detect the expressions of nephroprotective marker protein (Nephrin), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in renal tissue. Western blot was used to detect the expressions of GRP78, CHOP, Bcl-2, Bax, and Nephrin proteins, and Real-time polymerase chain reaction (Real-time PCR) was employed to detect the expressions of Nephrin, GRP78, CHOP, Bcl-2, and Bax mRNAs in renal tissue. ResultsBefore drug administration, compared with those in the normal group, the body mass of db/db mice was significantly increased, and blood glucose, 24 h urine protein quantification, and ACR were significantly elevated in the Shenkang injection group and Dapagliflozin group (P<0.01). After 12 weeks of administration, compared with those in the model group, the general state of mice in the Shenkang injection group was significantly improved, and the body mass was decreased. The blood glucose was significantly reduced (P<0.01), and blood lipids TC, TG, and LDL were significantly decreased (P<0.05, P<0.01). The 24 h urine protein quantification and ACR were significantly decreased (P<0.05), and SCr and UREA were significantly reduced (P<0.01). Compared with those of the model group, the pathologic results of the Shenkang injection group showed that proliferation of mesangial cells, reduction of inflammatory cell infiltration, and alleviation of renal tubular vacuolization and podocyte damage were observed in renal tissue of mice. Electron microscopy showed that fusion of the pedicle protruding and thickening of the basement membrane were reduced. Immunohistochemistry results showed that the expressions of GRP78, CHOP, and Bax proteins were significantly reduced (P<0.01), and the expressions of Nephrin and Bcl-2 proteins were significantly increased (P<0.01) in renal tissue of the Shenkang injection group. Western blot results showed that the expressions of Nephrin and Bcl-2 in the Shenkang injection group were significantly increased (P<0.05, P<0.01), and the expressions of GRP78, CHOP, and Bax proteins were significantly decreased (P<0.05, P<0.01). Real-time PCR results showed that the expressions of GRP78, CHOP, and Bax mRNAs were down regulated in the Shenkang injection group (P<0.01), and the expressions of Nephrin and Bcl-2 mRNAs were up regulated (P<0.01). ConclusionShenkang injection inhibits endoplasmic reticulum stress response and podocyte apoptosis by regulating the GRP78/CHOP signaling pathway, which in turn ensures the integrity of glomerular filtration barrier, reduces the occurrence of proteinuria, improves renal function, and thus delays the progression of diabetic kidney disease.

Result Analysis
Print
Save
E-mail