1.Persistent influence of past obesity on current adiponectin levels and mortality in patients with type 2 diabetes
Min-Ji KIM ; Sung-Woo KIM ; Bitna HA ; Hyang Sook KIM ; So-Hee KWON ; Jonghwa JIN ; Yeon-Kyung CHOI ; Keun-Gyu PARK ; Jung Guk KIM ; In-Kyu LEE ; Jae-Han JEON
The Korean Journal of Internal Medicine 2025;40(2):299-309
Background/Aims:
Adiponectin, a hormone primarily produced by adipocytes, typically shows an inverse relationship with body mass index (BMI). However, some studies have reported a positive correlation between the two. Thus, this study aimed to examine the relationship between adiponectin level and BMI in diabetic patients, focusing on the impact of past obesity on current adiponectin levels.
Methods:
We conducted an observational study analyzing data from 323 diabetic patients at Kyungpook National University Hospital. Based on past and current BMIs, participants were categorized into never-obese (nn, n = 106), previously obese (on, n = 43), and persistently obese (oo, n = 73) groups based on a BMI threshold of 25 kg/m2. Adiponectin level and BMI were key variables. Kaplan–Meier analysis assessed their impact on all-cause mortality up to August 2023, with survival differences based on adiponectin quartiles and follow-up starting from patient enrollment (2010–2015).
Results:
The analysis revealed a significant inverse correlation between adiponectin level and past maximum BMI. The on group exhibited approximately 10% lower adiponectin levels compared to the nn group. This association remained significant after adjusting for current BMI, age, and sex, highlighting the lasting influence of previous obesity on adiponectin levels. Furthermore, survival analysis indicated that patients in the lowest adiponectin quartile had reduced survival, with a statistically significant trend (p = 0.062).
Conclusions
Findings of this study suggest that lower adiponectin levels, potentially reflecting past obesity, are associated with decreased survival in diabetic patients, underscoring a critical role of adiponectin in long-term health outcomes.
2.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
3.Thoracic spinal cord damage in rat following cardiac arrest: neuronal loss, blood-spinal cord barrier leakage, and astrocyte endfeet disruption
Myoung Cheol SHIN ; Hyun-Jin TAE ; Joon Ha PARK ; Ji Hyeon AHN ; Dae Won KIM ; Moo-Ho WON ; Jun Hwi CHO ; Tae-Kyeong LEE
Journal of the Korean Society of Emergency Medicine 2025;36(1):1-11
Objective:
Cardiac arrest and cardiopulmonary resuscitation (CA/R) lead to whole-body ischemia and reperfusion (IR) injury, causing multiple organ dysfunction, including ischemic spinal cord injury. The thoracic spinal cord levels are crucial for maintaining the sympathetic functions vital for life. This study examined blood-spinal cord barrier (BSCB) leakage and astrocyte endfeet (AEF) disruption and their effects on survival, physiological variables, and neuronal damage/death in the intermediate zone (IMZ) at the seventh thoracic spinal cord level after asphyxial CA/R in rats.
Methods:
The rats underwent whole-body IR injury by asphyxial CA/R. Kaplan-Meier analysis was conducted to assess the cumulative survival post-CA/R. The histological changes post-CA/R were evaluated using immunohistochemistry, histofluorescence, and double histofluorescence.
Results:
No significant differences in body weight, mean arterial pressure, and heart rate were found between the sham and CA/R groups post-CA/R. The survival rates in the CA/R group at 12, 24, and 48 hours were 62.58%, 36.37%, and 7.8%, respectively. Neuronal loss and BSCB leakage began 12 hours post-CA/R, increasing with time. Reactive astrogliosis appeared at 12 hours and increased, while AEF disruption around blood vessels was evident at 48 hours.
Conclusion
The survival rate declined significantly by 48 hours post-CA/R. Neuronal loss and BSCB leakage in the thoracic spinal cord IMZ was evident at 12 hours and significant by 48 hours, aligning with AEF disruption. Neuronal loss in the thoracic spinal cord IMZ post-CA/R may be related to BSCB leakage and AEF disruption.
4.Transvaginal Drainage of Pelvic Fluid Collections Unsuitable for Transabdominal Approach
Hwa Jin LEE ; Ji Hoon SHIN ; Gun Ha KIM ; Heung Kyu KO
Journal of the Korean Society of Radiology 2025;86(2):259-269
Purpose:
To evaluate the efficacy and safety of ultrasonography- and fluoroscopy-guided transvaginal catheter drainage for pelvic fluid collection.
Materials and Methods:
This single-center retrospective study included nine female patients who underwent transvaginal drainage for pelvic fluid collection unsuitable for transabdominal access between October 2016 and January 2023. The study analyzed patient symptoms and signs, ultrasonography and CT findings, transvaginal approach details, and technical and clinical outcomes, including complications. Catheters of size 7 or 8.5-Fr, with or without an endocavitary needle guide were used for the puncture.
Results:
Pelvic fluid collections were primarily post-operative (n = 7) or from patients with primary tubo-ovarian abscesses (n = 2). All patients achieved technical success, defined as the successful insertion of the drainage catheter at the site of target fluid collection, and clinical success, defined as the improvement of symptoms with catheter removal within 1 week. In seven cases, the procedure was assisted by an endocavitary needle guide. The median catheter indwelling period was 2 days, with two minor complications: accidental catheter removal and urinary bladder puncture, both of which were managed without further complications.
Conclusion
Ultrasonography- and fluoroscopy-guided transvaginal drainage are effective and safe methods for managing pelvic fluid collections that are unsuitable for a transabdominal approach.
5.The Effects of Nicotine on Re-endothelialization, Inflammation, and Neoatherosclerosis After Drug-Eluting Stent Implantation in a Porcine Model
Seok OH ; Ju Han KIM ; Saleem AHMAD ; Yu Jeong JIN ; Mi Hyang NA ; Munki KIM ; Jeong Ha KIM ; Dae Sung PARK ; Dae Young HYUN ; Kyung Hoon CHO ; Min Chul KIM ; Doo Sun SIM ; Young Joon HONG ; Seung-won LEE ; Youngkeun AHN ; Myung Ho JEONG
Korean Circulation Journal 2025;55(1):50-64
Background and Objectives:
Cigarette smoking is a major risk factor for atherosclerosis.Nicotine, a crucial constituent of tobacco, contributes to atherosclerosis development and progression. However, evidence of the association between nicotine and neointima formation is limited. We aimed to evaluate whether nicotine enhances neointimal hyperplasia in the native epicardial coronary arteries of pigs after percutaneous coronary intervention (PCI) with drug-eluting stents (DES).
Methods:
After coronary angiography (CAG) and quantitative coronary angiography (QCA), we implanted 20 DES into 20 pigs allocated to 2 groups: no-nicotine (n=10) and nicotine (n=10) groups. Post-PCI CAG and QCA were performed immediately. Follow-up CAG, QCA, optical coherence tomography (OCT), and histopathological analyses were performed 2 months post-PCI.
Results:
Despite intergroup similarities in the baseline QCA findings, OCT analysis showed that the nicotine group had a smaller mean stent and lumen areas, a larger mean neointimal area, greater percent area stenosis, and higher peri-strut fibrin and inflammation scores than the no-nicotine group. In immunofluorescence analysis, the nicotine group displayed higher expression of CD68 and α-smooth muscle actin but lower CD31 expression than the no-nicotine group.
Conclusions
Nicotine inhibited re-endothelialization and promoted inflammation and NIH after PCI with DES in a porcine model.
6.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
7.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
8.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
9.Persistent influence of past obesity on current adiponectin levels and mortality in patients with type 2 diabetes
Min-Ji KIM ; Sung-Woo KIM ; Bitna HA ; Hyang Sook KIM ; So-Hee KWON ; Jonghwa JIN ; Yeon-Kyung CHOI ; Keun-Gyu PARK ; Jung Guk KIM ; In-Kyu LEE ; Jae-Han JEON
The Korean Journal of Internal Medicine 2025;40(2):299-309
Background/Aims:
Adiponectin, a hormone primarily produced by adipocytes, typically shows an inverse relationship with body mass index (BMI). However, some studies have reported a positive correlation between the two. Thus, this study aimed to examine the relationship between adiponectin level and BMI in diabetic patients, focusing on the impact of past obesity on current adiponectin levels.
Methods:
We conducted an observational study analyzing data from 323 diabetic patients at Kyungpook National University Hospital. Based on past and current BMIs, participants were categorized into never-obese (nn, n = 106), previously obese (on, n = 43), and persistently obese (oo, n = 73) groups based on a BMI threshold of 25 kg/m2. Adiponectin level and BMI were key variables. Kaplan–Meier analysis assessed their impact on all-cause mortality up to August 2023, with survival differences based on adiponectin quartiles and follow-up starting from patient enrollment (2010–2015).
Results:
The analysis revealed a significant inverse correlation between adiponectin level and past maximum BMI. The on group exhibited approximately 10% lower adiponectin levels compared to the nn group. This association remained significant after adjusting for current BMI, age, and sex, highlighting the lasting influence of previous obesity on adiponectin levels. Furthermore, survival analysis indicated that patients in the lowest adiponectin quartile had reduced survival, with a statistically significant trend (p = 0.062).
Conclusions
Findings of this study suggest that lower adiponectin levels, potentially reflecting past obesity, are associated with decreased survival in diabetic patients, underscoring a critical role of adiponectin in long-term health outcomes.
10.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.

Result Analysis
Print
Save
E-mail