1.The Effect of Postnatal Systemic Corticosteroid on Neurodevelopmental Outcome in Very Low Birth Weight Preterm Infants
Joo Yun YANG ; Young Min YOUN ; Jung In KANG ; Ye Jin HAN ; Do Kyung LEE ; Hyun Kyung BAE ; So-Yeon SHIM
Neonatal Medicine 2025;32(1):10-20
Purpose:
This study aimed to investigate the effects of postnatal systemic corticosteroids on neurodevelopment in very low birth weight (VLBW) preterm infants.
Methods:
This was a population-based study of the Korean Neonatal Network of VLBW infant born at 23+0 and 31+6 weeks of gestation between 2013 and 2020. VLBW preterm infants assessed using the Bayley Scales of Infant and Toddler Development, third edition (BSID-III) at 18–24 months of corrected age and 3 years of age were enrolled. The primary outcomes were BSID-III scores and neurodevelopmental delays, with scores of <85. Socioeconomic status and clinical variables were adjusted for using multivariate regression analyses.
Results:
In total, 517 infants were enrolled in this study. Among the 216 (41.8%) infants who received postnatal systemic corticosteroids, the rate of cognitive delay was significantly higher at 18–24 months of corrected age than at 3 years of age. The rates of language and motor delays were significantly higher both at 18–24 months of corrected age and at 3 years of age. When multivariate logistic regression was performed, postnatal systemic corticosteroid use was significantly associated with cognitive delay at 18–24 months of corrected age, but not at 3 years of age. There was no significant association between postnatal systemic corticosteroid use and language or motor delay at 18-24 months of corrected age or at 3 years of age after multivariate logistic regression.
Conclusion
Postnatal systemic corticosteroid use in VLBW preterm infants increased the risk of cognitive delay at 18–24 months of corrected age, but not at 3 years.
2.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
3.Clinical Practice Guidelines for Dementia: Recommendations for Cholinesterase Inhibitors and Memantine
Yeshin KIM ; Dong Woo KANG ; Geon Ha KIM ; Ko Woon KIM ; Hee-Jin KIM ; Seunghee NA ; Kee Hyung PARK ; Young Ho PARK ; Gihwan BYEON ; Jeewon SUH ; Joon Hyun SHIN ; YongSoo SHIM ; YoungSoon YANG ; Yoo Hyun UM ; Seong-il OH ; Sheng-Min WANG ; Bora YOON ; Sun Min LEE ; Juyoun LEE ; Jin San LEE ; Jae-Sung LIM ; Young Hee JUNG ; Juhee CHIN ; Hyemin JANG ; Miyoung CHOI ; Yun Jeong HONG ; Hak Young RHEE ; Jae-Won JANG ;
Dementia and Neurocognitive Disorders 2025;24(1):1-23
Background:
and Purpose: This clinical practice guideline provides evidence-based recommendations for treatment of dementia, focusing on cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists for Alzheimer’s disease (AD) and other types of dementia.
Methods:
Using the Population, Intervention, Comparison, Outcomes (PICO) framework, we developed key clinical questions and conducted systematic literature reviews. A multidisciplinary panel of experts, organized by the Korean Dementia Association, evaluated randomized controlled trials and observational studies. Recommendations were graded for evidence quality and strength using Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.
Results:
Three main recommendations are presented: (1) For AD, cholinesterase inhibitors (donepezil, rivastigmine, galantamine) are strongly recommended for improving cognition and daily function based on moderate evidence; (2) Cholinesterase inhibitors are conditionally recommended for vascular dementia and Parkinson’s disease dementia, with a strong recommendation for Lewy body dementia; (3) For moderate to severe AD, NMDA receptor antagonist (memantine) is strongly recommended, demonstrating significant cognitive and functional improvements. Both drug classes showed favorable safety profiles with manageable side effects.
Conclusions
This guideline offers standardized, evidence-based pharmacologic recommendations for dementia management, with specific guidance on cholinesterase inhibitors and NMDA receptor antagonists. It aims to support clinical decision-making and improve patient outcomes in dementia care. Further updates will address emerging treatments, including amyloid-targeting therapies, to reflect advances in dementia management.
4.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
5.Cynaropicrin Induces Reactive Oxygen Species-Dependent Paraptosis-Like Cell Death in Human Liver Cancer Cells
Min Yeong KIM ; Hee-Jae CHA ; Su Hyun HONG ; Sung-Kwon MOON ; Taeg Kyu KWON ; Young-Chae CHANG ; Gi Young KIM ; Jin Won HYUN ; A-Young NAM ; Jung-Hyun SHIM ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):470-482
Cynaropicrin, a sesquiterpene lactone found in artichoke leaves exerts diverse pharmacological effects. This study investigated whether cynaropicrin has a paraptosis-like cell death effect in human hepatocellular carcinoma Hep3B cells in addition to the apoptotic effects reported in several cancer cell lines. Cynaropicrin-induced cytotoxicity and cytoplasmic vacuolation, a key characteristic of paraptosis, were not ameliorated by inhibitors of necroptosis, autophagy, or pan caspase inhibitors in Hep3B cells. Our study showed that cynaropicrin-induced cytotoxicity was accompanied by mitochondrial dysfunction and endoplasmic reticulum stress along with increased cellular calcium ion levels. These effects were significantly mitigated by endoplasmic reticulum stress inhibitor or protein synthesis inhibitor. Moreover, cynaropicrin treatment in Hep3B cells increased reactive oxygen species generation and downregulated apoptosis-linked gene 2-interacting protein X (Alix), a protein that inhibits paraptosis. The addition of the reactive oxygen species scavenger N-acetyl-L-cysteine (NAC) neutralized cynaropicrin-induced changes in Alix expression and endoplasmic reticulum stress marker proteins counteracting endoplasmic reticulum stress and mitochondrial impairment. This demonstrates a close relationship between endoplasmic reticulum stress and reactive oxygen species generation. Additionally, cynaropicrin activated p38 mitogen activated protein kinase and a selective p38 mitogen activated protein kinase blocker alleviated the biological phenomena induced by cynaropicrin. NAC pretreatment showed the best reversal of cynaropicrin induced vacuolation and cellular inactivity. Our findings suggest that cynaropicrin induced oxidative stress in Hep3B cells contributes to paraptotic events including endoplasmic reticulum stress and mitochondrial damage.
6.Assessing the Efficacy of Bortezomib and Dexamethasone for Induction and Maintenance Therapy in Relapsed/Refractory Cutaneous T-Cell Lymphoma: A Phase II CISL1701/BIC Study
Yoon Seok CHOI ; Joonho SHIM ; Ka-Won KANG ; Sang Eun YOON ; Jun Sik HONG ; Sung Nam LIM ; Ho-Young YHIM ; Jung Hye KWON ; Gyeong-Won LEE ; Deok-Hwan YANG ; Sung Yong OH ; Ho-Jin SHIN ; Hyeon-Seok EOM ; Dok Hyun YOON ; Hong Ghi LEE ; Seong Hyun JEONG ; Won Seog KIM ; Seok Jin KIM
Cancer Research and Treatment 2025;57(1):267-279
Purpose:
This multicenter, open-label, phase II trial evaluated the efficacy and safety of bortezomib combined with dexamethasone for the treatment of relapsed/refractory cutaneous T-cell lymphoma (CTCL) in previously treated patients across 14 institutions in South Korea.
Materials and Methods:
Between September 2017 and July 2020, 29 patients with histologically confirmed CTCL received treatment, consisting of eight 4-week cycles of induction therapy followed by maintenance therapy, contingent upon response, for up to one year. The primary endpoint was the proportion of patients achieving an objective global response.
Results:
Thirteen of the 29 patients (44.8%) achieved an objective global response, including two complete responses. The median progression-free survival (PFS) was 5.8 months, with responders showing a median PFS of 14.0 months. Treatment-emergent adverse events were generally mild, with a low incidence of peripheral neuropathy and hematologic toxicities. Despite the trend toward shorter PFS in patients with higher mutation burdens, genomic profiling before and after treatment showed no significant emergence of new mutations indicative of disease progression.
Conclusion
This study supports the use of bortezomib and dexamethasone as a viable and safe treatment option for previously treated CTCL, demonstrating substantial efficacy and manageability in adverse effects. Further research with a larger cohort is suggested to validate these findings and explore the prognostic value of mutation profiles.
7.The Effect of Postnatal Systemic Corticosteroid on Neurodevelopmental Outcome in Very Low Birth Weight Preterm Infants
Joo Yun YANG ; Young Min YOUN ; Jung In KANG ; Ye Jin HAN ; Do Kyung LEE ; Hyun Kyung BAE ; So-Yeon SHIM
Neonatal Medicine 2025;32(1):10-20
Purpose:
This study aimed to investigate the effects of postnatal systemic corticosteroids on neurodevelopment in very low birth weight (VLBW) preterm infants.
Methods:
This was a population-based study of the Korean Neonatal Network of VLBW infant born at 23+0 and 31+6 weeks of gestation between 2013 and 2020. VLBW preterm infants assessed using the Bayley Scales of Infant and Toddler Development, third edition (BSID-III) at 18–24 months of corrected age and 3 years of age were enrolled. The primary outcomes were BSID-III scores and neurodevelopmental delays, with scores of <85. Socioeconomic status and clinical variables were adjusted for using multivariate regression analyses.
Results:
In total, 517 infants were enrolled in this study. Among the 216 (41.8%) infants who received postnatal systemic corticosteroids, the rate of cognitive delay was significantly higher at 18–24 months of corrected age than at 3 years of age. The rates of language and motor delays were significantly higher both at 18–24 months of corrected age and at 3 years of age. When multivariate logistic regression was performed, postnatal systemic corticosteroid use was significantly associated with cognitive delay at 18–24 months of corrected age, but not at 3 years of age. There was no significant association between postnatal systemic corticosteroid use and language or motor delay at 18-24 months of corrected age or at 3 years of age after multivariate logistic regression.
Conclusion
Postnatal systemic corticosteroid use in VLBW preterm infants increased the risk of cognitive delay at 18–24 months of corrected age, but not at 3 years.
8.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
9.The Effect of Postnatal Systemic Corticosteroid on Neurodevelopmental Outcome in Very Low Birth Weight Preterm Infants
Joo Yun YANG ; Young Min YOUN ; Jung In KANG ; Ye Jin HAN ; Do Kyung LEE ; Hyun Kyung BAE ; So-Yeon SHIM
Neonatal Medicine 2025;32(1):10-20
Purpose:
This study aimed to investigate the effects of postnatal systemic corticosteroids on neurodevelopment in very low birth weight (VLBW) preterm infants.
Methods:
This was a population-based study of the Korean Neonatal Network of VLBW infant born at 23+0 and 31+6 weeks of gestation between 2013 and 2020. VLBW preterm infants assessed using the Bayley Scales of Infant and Toddler Development, third edition (BSID-III) at 18–24 months of corrected age and 3 years of age were enrolled. The primary outcomes were BSID-III scores and neurodevelopmental delays, with scores of <85. Socioeconomic status and clinical variables were adjusted for using multivariate regression analyses.
Results:
In total, 517 infants were enrolled in this study. Among the 216 (41.8%) infants who received postnatal systemic corticosteroids, the rate of cognitive delay was significantly higher at 18–24 months of corrected age than at 3 years of age. The rates of language and motor delays were significantly higher both at 18–24 months of corrected age and at 3 years of age. When multivariate logistic regression was performed, postnatal systemic corticosteroid use was significantly associated with cognitive delay at 18–24 months of corrected age, but not at 3 years of age. There was no significant association between postnatal systemic corticosteroid use and language or motor delay at 18-24 months of corrected age or at 3 years of age after multivariate logistic regression.
Conclusion
Postnatal systemic corticosteroid use in VLBW preterm infants increased the risk of cognitive delay at 18–24 months of corrected age, but not at 3 years.
10.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.

Result Analysis
Print
Save
E-mail