1.The kinetics of nucleolar precursor bodies clustering at the pronuclei interface: Positive correlations with the morphokinetic characteristics of cleaving embryos and euploidy in preimplantation genetic testing programs
Hwa Soon OH ; Jung Mi JANG ; Hye Jin YOON ; Chang Woo CHOO ; Kyung Sil LIM ; Jin Ho LIM ; Yong-Pil CHEON
Clinical and Experimental Reproductive Medicine 2025;52(2):150-156
Objective:
This study investigated potential relationships between the kinetics of nucleolar precursor bodies (NPBs) in the pronucleus and developmental morphokinetics and euploidy in human preimplantation genetic testing for aneuploidy (PGT-A) cycles.
Methods:
The morphokinetic analysis of 200 blastocysts obtained from 53 PGT-A cycles was performed retrospectively in a time-lapse incubator. At the time of pronuclear breakdown (PNBD), we categorized the blastocysts into two groups based on the kinetic degree of clustering NPBs at the interface of the two pronuclei: clustered NPBs (CL) and non-clustered NPBs (NCL). We then compared morphokinetic parameters, abnormal behavioral events, and the rate of aneuploidy between the two groups.
Results:
Pronuclear fading and the first cleavage occurred earlier in the NCL group than in the CL group. However, the initiation of blastocyst formation and blastocyst expansion was delayed in the NCL group relative to the CL group. No differences were found in the rate of abnormal cleavage events, such as multinucleation at the 2-cell stage, direct cleavage from one to three cells, and from two to five cells between the CL and NCL groups. However, the fragmentation rate at the 8-cell stage was higher in the NCL group than in the CL group (10.3% vs. 1.9%, p<0.05). Additionally, the euploid rate in the CL group was significantly higher than in the NCL group (37.9% vs. 12.4%, p<0.05).
Conclusion
These results demonstrate the effectiveness of combining NPB clustering at PNBD with morphokinetics as a parameter for selecting embryos with higher developmental potential in in vitro fertilization.
2.The kinetics of nucleolar precursor bodies clustering at the pronuclei interface: Positive correlations with the morphokinetic characteristics of cleaving embryos and euploidy in preimplantation genetic testing programs
Hwa Soon OH ; Jung Mi JANG ; Hye Jin YOON ; Chang Woo CHOO ; Kyung Sil LIM ; Jin Ho LIM ; Yong-Pil CHEON
Clinical and Experimental Reproductive Medicine 2025;52(2):150-156
Objective:
This study investigated potential relationships between the kinetics of nucleolar precursor bodies (NPBs) in the pronucleus and developmental morphokinetics and euploidy in human preimplantation genetic testing for aneuploidy (PGT-A) cycles.
Methods:
The morphokinetic analysis of 200 blastocysts obtained from 53 PGT-A cycles was performed retrospectively in a time-lapse incubator. At the time of pronuclear breakdown (PNBD), we categorized the blastocysts into two groups based on the kinetic degree of clustering NPBs at the interface of the two pronuclei: clustered NPBs (CL) and non-clustered NPBs (NCL). We then compared morphokinetic parameters, abnormal behavioral events, and the rate of aneuploidy between the two groups.
Results:
Pronuclear fading and the first cleavage occurred earlier in the NCL group than in the CL group. However, the initiation of blastocyst formation and blastocyst expansion was delayed in the NCL group relative to the CL group. No differences were found in the rate of abnormal cleavage events, such as multinucleation at the 2-cell stage, direct cleavage from one to three cells, and from two to five cells between the CL and NCL groups. However, the fragmentation rate at the 8-cell stage was higher in the NCL group than in the CL group (10.3% vs. 1.9%, p<0.05). Additionally, the euploid rate in the CL group was significantly higher than in the NCL group (37.9% vs. 12.4%, p<0.05).
Conclusion
These results demonstrate the effectiveness of combining NPB clustering at PNBD with morphokinetics as a parameter for selecting embryos with higher developmental potential in in vitro fertilization.
3.The kinetics of nucleolar precursor bodies clustering at the pronuclei interface: Positive correlations with the morphokinetic characteristics of cleaving embryos and euploidy in preimplantation genetic testing programs
Hwa Soon OH ; Jung Mi JANG ; Hye Jin YOON ; Chang Woo CHOO ; Kyung Sil LIM ; Jin Ho LIM ; Yong-Pil CHEON
Clinical and Experimental Reproductive Medicine 2025;52(2):150-156
Objective:
This study investigated potential relationships between the kinetics of nucleolar precursor bodies (NPBs) in the pronucleus and developmental morphokinetics and euploidy in human preimplantation genetic testing for aneuploidy (PGT-A) cycles.
Methods:
The morphokinetic analysis of 200 blastocysts obtained from 53 PGT-A cycles was performed retrospectively in a time-lapse incubator. At the time of pronuclear breakdown (PNBD), we categorized the blastocysts into two groups based on the kinetic degree of clustering NPBs at the interface of the two pronuclei: clustered NPBs (CL) and non-clustered NPBs (NCL). We then compared morphokinetic parameters, abnormal behavioral events, and the rate of aneuploidy between the two groups.
Results:
Pronuclear fading and the first cleavage occurred earlier in the NCL group than in the CL group. However, the initiation of blastocyst formation and blastocyst expansion was delayed in the NCL group relative to the CL group. No differences were found in the rate of abnormal cleavage events, such as multinucleation at the 2-cell stage, direct cleavage from one to three cells, and from two to five cells between the CL and NCL groups. However, the fragmentation rate at the 8-cell stage was higher in the NCL group than in the CL group (10.3% vs. 1.9%, p<0.05). Additionally, the euploid rate in the CL group was significantly higher than in the NCL group (37.9% vs. 12.4%, p<0.05).
Conclusion
These results demonstrate the effectiveness of combining NPB clustering at PNBD with morphokinetics as a parameter for selecting embryos with higher developmental potential in in vitro fertilization.
4.Effect of Microwave Ablation Power and Antenna Approach on Tumor Seeding: An Ex Vivo Subcapsular Tumor Model Study
Hyo Jeong LEE ; Chang Hoon OH ; Jin Sil KIM ; Jeong Kyong LEE
Korean Journal of Radiology 2024;25(11):1003-1010
Objective:
To evaluate the effects of microwave (MW) power and antenna approach methods on extrahepatic tumor seeding and ablation zone size using an ex vivo subcapsular tumor-mimic model.
Materials and Methods:
Forty-one subcapsular tumor mimics were prepared by injecting a mixture of contrast media into bovine liver blocks. Ablation was performed using low- and high-power protocols (75 W and 100 W for 4 and 3 minutes, respectively). The antenna approach was assessed in two directions: parallel and perpendicular to the capsule. CT scans were obtained before and after the ablation to detect contrast leakage on the hepatic surface. The presence of leakage, ablation zone size, and the timing of the first popping sound were compared between the two groups.
Results:
Five cases of contrast leakage were observed in the low-power group (n = 21) and 17 in the high-power group (n = 20) (23.8% vs. 85.0%, P < 0.001). Contrast leaks were less frequently observed in the low-power protocol compared to the high-power protocol, regardless of the antenna approach (18.2% [2/11] vs. 80.0% [8/10], P = 0.009 for parallel access;30.0% [3/10] vs. 90.0% [9/10], P = 0.020 for perpendicular access). The timing of the first popping sound was significantly delayed in the low-power group compared to the high-power group (137.7 ± 51.4 s vs. 77.8 ± 31.4 s, P < 0.001). The size of the ablation zone did not differ significantly between the two power groups (P = 0.415). The parallel and perpendicular antenna approaches did not show significant differences in the number of contrast leaks, popping sound timing, or ablationzone size (P = 0.536, 0.463, and 0.271, respectively).
Conclusion
Low-power MW ablation may be superior to a high-power protocol in reducing the risk of tumor seeding in subcapsular tumors, regardless of the antenna approach.
5.Effect of Microwave Ablation Power and Antenna Approach on Tumor Seeding: An Ex Vivo Subcapsular Tumor Model Study
Hyo Jeong LEE ; Chang Hoon OH ; Jin Sil KIM ; Jeong Kyong LEE
Korean Journal of Radiology 2024;25(11):1003-1010
Objective:
To evaluate the effects of microwave (MW) power and antenna approach methods on extrahepatic tumor seeding and ablation zone size using an ex vivo subcapsular tumor-mimic model.
Materials and Methods:
Forty-one subcapsular tumor mimics were prepared by injecting a mixture of contrast media into bovine liver blocks. Ablation was performed using low- and high-power protocols (75 W and 100 W for 4 and 3 minutes, respectively). The antenna approach was assessed in two directions: parallel and perpendicular to the capsule. CT scans were obtained before and after the ablation to detect contrast leakage on the hepatic surface. The presence of leakage, ablation zone size, and the timing of the first popping sound were compared between the two groups.
Results:
Five cases of contrast leakage were observed in the low-power group (n = 21) and 17 in the high-power group (n = 20) (23.8% vs. 85.0%, P < 0.001). Contrast leaks were less frequently observed in the low-power protocol compared to the high-power protocol, regardless of the antenna approach (18.2% [2/11] vs. 80.0% [8/10], P = 0.009 for parallel access;30.0% [3/10] vs. 90.0% [9/10], P = 0.020 for perpendicular access). The timing of the first popping sound was significantly delayed in the low-power group compared to the high-power group (137.7 ± 51.4 s vs. 77.8 ± 31.4 s, P < 0.001). The size of the ablation zone did not differ significantly between the two power groups (P = 0.415). The parallel and perpendicular antenna approaches did not show significant differences in the number of contrast leaks, popping sound timing, or ablationzone size (P = 0.536, 0.463, and 0.271, respectively).
Conclusion
Low-power MW ablation may be superior to a high-power protocol in reducing the risk of tumor seeding in subcapsular tumors, regardless of the antenna approach.
6.Effect of Microwave Ablation Power and Antenna Approach on Tumor Seeding: An Ex Vivo Subcapsular Tumor Model Study
Hyo Jeong LEE ; Chang Hoon OH ; Jin Sil KIM ; Jeong Kyong LEE
Korean Journal of Radiology 2024;25(11):1003-1010
Objective:
To evaluate the effects of microwave (MW) power and antenna approach methods on extrahepatic tumor seeding and ablation zone size using an ex vivo subcapsular tumor-mimic model.
Materials and Methods:
Forty-one subcapsular tumor mimics were prepared by injecting a mixture of contrast media into bovine liver blocks. Ablation was performed using low- and high-power protocols (75 W and 100 W for 4 and 3 minutes, respectively). The antenna approach was assessed in two directions: parallel and perpendicular to the capsule. CT scans were obtained before and after the ablation to detect contrast leakage on the hepatic surface. The presence of leakage, ablation zone size, and the timing of the first popping sound were compared between the two groups.
Results:
Five cases of contrast leakage were observed in the low-power group (n = 21) and 17 in the high-power group (n = 20) (23.8% vs. 85.0%, P < 0.001). Contrast leaks were less frequently observed in the low-power protocol compared to the high-power protocol, regardless of the antenna approach (18.2% [2/11] vs. 80.0% [8/10], P = 0.009 for parallel access;30.0% [3/10] vs. 90.0% [9/10], P = 0.020 for perpendicular access). The timing of the first popping sound was significantly delayed in the low-power group compared to the high-power group (137.7 ± 51.4 s vs. 77.8 ± 31.4 s, P < 0.001). The size of the ablation zone did not differ significantly between the two power groups (P = 0.415). The parallel and perpendicular antenna approaches did not show significant differences in the number of contrast leaks, popping sound timing, or ablationzone size (P = 0.536, 0.463, and 0.271, respectively).
Conclusion
Low-power MW ablation may be superior to a high-power protocol in reducing the risk of tumor seeding in subcapsular tumors, regardless of the antenna approach.
7.Effect of Microwave Ablation Power and Antenna Approach on Tumor Seeding: An Ex Vivo Subcapsular Tumor Model Study
Hyo Jeong LEE ; Chang Hoon OH ; Jin Sil KIM ; Jeong Kyong LEE
Korean Journal of Radiology 2024;25(11):1003-1010
Objective:
To evaluate the effects of microwave (MW) power and antenna approach methods on extrahepatic tumor seeding and ablation zone size using an ex vivo subcapsular tumor-mimic model.
Materials and Methods:
Forty-one subcapsular tumor mimics were prepared by injecting a mixture of contrast media into bovine liver blocks. Ablation was performed using low- and high-power protocols (75 W and 100 W for 4 and 3 minutes, respectively). The antenna approach was assessed in two directions: parallel and perpendicular to the capsule. CT scans were obtained before and after the ablation to detect contrast leakage on the hepatic surface. The presence of leakage, ablation zone size, and the timing of the first popping sound were compared between the two groups.
Results:
Five cases of contrast leakage were observed in the low-power group (n = 21) and 17 in the high-power group (n = 20) (23.8% vs. 85.0%, P < 0.001). Contrast leaks were less frequently observed in the low-power protocol compared to the high-power protocol, regardless of the antenna approach (18.2% [2/11] vs. 80.0% [8/10], P = 0.009 for parallel access;30.0% [3/10] vs. 90.0% [9/10], P = 0.020 for perpendicular access). The timing of the first popping sound was significantly delayed in the low-power group compared to the high-power group (137.7 ± 51.4 s vs. 77.8 ± 31.4 s, P < 0.001). The size of the ablation zone did not differ significantly between the two power groups (P = 0.415). The parallel and perpendicular antenna approaches did not show significant differences in the number of contrast leaks, popping sound timing, or ablationzone size (P = 0.536, 0.463, and 0.271, respectively).
Conclusion
Low-power MW ablation may be superior to a high-power protocol in reducing the risk of tumor seeding in subcapsular tumors, regardless of the antenna approach.
8.Effect of Microwave Ablation Power and Antenna Approach on Tumor Seeding: An Ex Vivo Subcapsular Tumor Model Study
Hyo Jeong LEE ; Chang Hoon OH ; Jin Sil KIM ; Jeong Kyong LEE
Korean Journal of Radiology 2024;25(11):1003-1010
Objective:
To evaluate the effects of microwave (MW) power and antenna approach methods on extrahepatic tumor seeding and ablation zone size using an ex vivo subcapsular tumor-mimic model.
Materials and Methods:
Forty-one subcapsular tumor mimics were prepared by injecting a mixture of contrast media into bovine liver blocks. Ablation was performed using low- and high-power protocols (75 W and 100 W for 4 and 3 minutes, respectively). The antenna approach was assessed in two directions: parallel and perpendicular to the capsule. CT scans were obtained before and after the ablation to detect contrast leakage on the hepatic surface. The presence of leakage, ablation zone size, and the timing of the first popping sound were compared between the two groups.
Results:
Five cases of contrast leakage were observed in the low-power group (n = 21) and 17 in the high-power group (n = 20) (23.8% vs. 85.0%, P < 0.001). Contrast leaks were less frequently observed in the low-power protocol compared to the high-power protocol, regardless of the antenna approach (18.2% [2/11] vs. 80.0% [8/10], P = 0.009 for parallel access;30.0% [3/10] vs. 90.0% [9/10], P = 0.020 for perpendicular access). The timing of the first popping sound was significantly delayed in the low-power group compared to the high-power group (137.7 ± 51.4 s vs. 77.8 ± 31.4 s, P < 0.001). The size of the ablation zone did not differ significantly between the two power groups (P = 0.415). The parallel and perpendicular antenna approaches did not show significant differences in the number of contrast leaks, popping sound timing, or ablationzone size (P = 0.536, 0.463, and 0.271, respectively).
Conclusion
Low-power MW ablation may be superior to a high-power protocol in reducing the risk of tumor seeding in subcapsular tumors, regardless of the antenna approach.
9.Long-term clinical outcomes after high and low ligations with lymph node dissection around the root of the inferior mesenteric artery in patients with rectal cancer
Min Wan LEE ; Sung Sil PARK ; Kiho YOU ; Dong Eun LEE ; Dong Woon LEE ; Sung Chan PARK ; Kyung Su HAN ; Dae Kyung SOHN ; Chang Won HONG ; Bun KIM ; Byung Chang KIM ; Hee Jin CHANG ; Dae Yong KIM ; Jae Hwan OH
Annals of Coloproctology 2024;40(1):62-73
Purpose:
This study aimed to evaluate the long-term clinical outcomes based on the ligation level of the inferior mesenteric artery (IMA) in patients with rectal cancer.
Methods:
This was a retrospective analysis of a prospectively collected database that included all patients who underwent elective low anterior resection for rectal cancer between January 2013 and December 2019. The clinical outcomes included oncological outcomes, postoperative complications, and functional outcomes. The oncological outcomes included overall survival (OS) and relapse-free survival (RFS). The functional outcomes, including defecatory and urogenital functions, were analyzed using the Fecal Incontinence Severity Index, International Prostate Symptom Score, and International Index of Erectile Function questionnaires.
Results:
In total, 545 patients were included in the analysis. Of these, 244 patients underwent high ligation (HL), whereas 301 underwent low ligation (LL). The tumor size was larger in the HL group than in the LL group. The number of harvested lymph nodes (LNs) was higher in the HL group than in the LL group. There were no significant differences in complication rates and recurrence patterns between the groups. There were no significant differences in 5-year RFS and OS between the groups. Cox regression analysis revealed that the ligation level (HL vs. LL) was not a significant risk factor for oncological outcomes. Regarding functional outcomes, the LL group showed a significant recovery in defecatory function 1 year postoperatively compared with the HL group.
Conclusion
LL with LNs dissection around the root of the IMA might not affect the oncologic outcomes comparing to HL; however, it has minimal benefit for defecatory function.
10.Rutaecarpine, Isolated from Evodia rutaecarpa, Inhibits Epithelial-Mesenchymal Transition and Cellular Senescence in a Mouse Model of Pulmonary Fibrosis
Eun CHOI ; Yeseul CHO ; Misu KIM ; Hee JIN ; Youngjo YOO ; Won Keun OH ; Yun-sil LEE
Natural Product Sciences 2024;30(3):190-197
Cellular senescence, a type of cytostasis, is the irreversible inhibition of the natural cell division in proliferating cells, resulting from various cellular stresses, including telomere shortening, DNA damage, mitochondrial dysfunctions, and pro-inflammatory responses. While cellular senescence can facilitate beneficial physiological processes such as tissue repair and wound healing, senescent cells also contribute to pathophysiological processes of agerelated diseases, including fibrotic lung diseases. The cellular senescence model and co-culture system were established to explore the underlying mechanisms associated with cellular senescence and fibrosis. Rutaecarpine is a bioactive alkaloid isolated from Evodia rutaecarpa (Rutaceae), a traditional herbal medicine. Rutaecarpine enhanced the promotor activity of E-cadherin, reduced TGF-β-induced reorganization of the actin cytoskeleton, and finally inhibited epithelialmesenchymal transition. Rutaecarpine also attenuated fibrotic and senescence features in bleomycin-induced lung fibrosis model. Here, we suggest the relevance between senescence and fibrosis, and a potential therapeutic approach of targeting senescence to attenuate lung fibrosis development.

Result Analysis
Print
Save
E-mail