1.Traditional Chinese Medicine Regulates NF-κB Signaling Pathway for Treatment of Obesity: A Review
Zijing WU ; Jixin LI ; Linjie QIU ; Yan REN ; Chacha ZOU ; Meijie LI ; Wenjie LI ; Jin ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):310-318
Obesity is a chronic low-grade inflammation and a risk factor for diseases such as diabetes, hypertension, dyslipidemia, and malignant tumors, demonstrating an increasingly grim development situation. The nuclear factor-kappa B (NF-κB) signaling pathway is a key signaling pathway involved in the immune response and inflammatory response. In obese individuals, the expression of NF-κB is overactivated, which leads to abnormal inflammatory responses in the body. Therefore, it is expected to alleviate inflammation and treat obesity by regulating the NF-κB signaling pathway, which has been proven effective by a large number of studies. The available studies on the NF-κB signaling pathway mostly focus on tumors, and there is no systematic review of the mechanism of this pathway in mediating obesity and the traditional Chinese medicine (TCM) treatment. We reviewed the research progress in the pathological and physiological processes of obesity mediated by NF-κB signaling pathway and TCM treatment, aiming to give insights into the clinical treatment of obesity with TCM and provide reference targets and research directions for exploring the biological foundations and the development of new TCM preparations.
2.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
3.Frequency and molecular basis of CD36 deficiency in Xinjiang, China
Jin QIU ; Fei LI ; Qiang LI ; Rubin WANG ; ; Jing LIU ; Wei CHEN
Chinese Journal of Blood Transfusion 2025;38(5):629-636
Objective: To investigate the distribution characteristics of CD36 antigen in healthy individuals in Xinjiang, China and analyze the molecular mechanisms underlying CD36 deficiency. Methods: Flow cytometry was used to assess CD36 antigen expression on platelets from 881 healthy individuals who underwent physical examinations between June and August 2023. Differences in CD36 antigen distribution among ethnic groups were compared, and genotyping and third-generation sequencing were conducted on samples with CD36 deficiency. Results: Among the 881 samples, 4 cases (0.5%) of CD36 type Ⅱ deficiency were identified. The deficiency frequency was 0.7% (3/430) in Han individuals and 0.3% (1/363) in Uygur individuals, with no statistically significant difference between the two groups (P>0.05). No mutations were detected in the coding regions of the deficient samples. Two samples exhibited a (TG)11 in intron 3. Among the 12 linked mutation sites, g. 55589 G>A was mutated to g. 55589G Del, while g. 55593 A del did not occur; however, g. 55591A>T was observed nearby. Additionally, 52742insGAAAA was present in 100% of the (TG)11 haplotypes, potentially representing a novel linked mutation. Conclusion: This study indicates that the positive frequency of CD36 antigen in Xinjiang is relatively high, suggesting a low risk of alloimmune diseases in clinical practice. The (TG)11 in intron 3 is not universally present in all CD36 type Ⅱ deficiency cases, and the number of linked mutation sites extends beyond the previously reported 12.
4.Advancements in the role of iris parameters in implantable collamer lens implantation
Huihui JIN ; Jiaqing HUANG ; Xian WU ; Yingjie NI ; Chaoyang HONG ; Peijin QIU ; Ting SHEN
International Eye Science 2025;25(7):1037-1045
Phakic intraocular lens implantation has become one of the important means of correcting refractive errors today. Among them,the implantable collamer lens(ICL)is favored for its wide range of correction, excellent optical quality, and high safety, but the risks of postoperative complications such as glaucoma and anterior subcapsular opacification still exist. Vault is an important indicator for evaluating the safety after ICL implantation, and its ideal state is crucial for preventing complications. Studies have shown that iris morphology has a significant impact on vault. In order to further optimize surgical outcomes and improve surgical safety, this review comprehensively reviews the research progress of iris-related parameters in ICL implantation and discusses the importance of various parameters in preoperative evaluation and postoperative follow-up.
5.Association of Kidd blood group distribution and genotypes specificity with the risk of coronary heart disease
Fei LI ; Jin QIU ; Huijun LI ; Xiaojie MA ; Tiesuo ZHAO ; Wei CHEN
Chinese Journal of Blood Transfusion 2025;38(6):803-810
Objective: To investigate the distribution characteristics of Kidd blood group antigens, phenotypes and genotypes in Xinjiang and their influence on the risk of coronary heart disease. Methods: Samples from 7 981 patients treated at People's Hospital of Xinjiang Uygur Autonomous Region from August 1, 2023 to May 31, 2024 were collected for Jk(a-b-) phenotype screening via urea hemolysis test, followed by the third-generation sequencing (TGS). Kidd blood group Jk
and Jk
antigens in 1 081 patients with coronary heart disease and 1 021 healthy people were detected, and their phenotype frequency distribution was analyzed and corresponding gene frequencies were calculated. Correlation analysis and logistic regression were used to evaluate the influence of Kidd blood group antigen expression on coronary heart disease risk. Results: Two Jk(a-b-) phenotype samples were detected, both resulting from novel gene mutation combinations. Comparative analysis of two groups revealed a higher proportion of the Jk(a-b+) phenotype in the case group (22.5%, 243/1 081) than in the control group (18.5%, 189/1 021). Moreover, Kidd blood group phenotype distribution varied significantly across all ethnic groups in the case group (P<0.05). In the control group, the Hui ethnic group exhibited the highest JK
JK
genotype frequency 64.15% (34/53). In the case group, the highest JK
allele frequency was observed in Mongol ethnic group 56.31% (125/222), and the lowest in Han patients 45.71% (341/746). The expression of Jk
antigen was negatively correlated with coronary heart disease (P<0.05). Conclusion: The distribution of Kidd blood group system varied across ethnic groups in Xinjiang. The expression of Jk
antigen may have protective effect on coronary heart disease, which provides a basis for future clinical blood transfusion treatment and the mechanism study of the correlation between Kidd blood group and coronary heart disease.
6.Hemolysis rates of three red blood cell components at the end of storage: a 5-year retrospective study
Zhenping LU ; Fufa LIU ; Meiyan KANG ; Xianbin WU ; Yanting WANG ; Xing LONG ; Xinlu QIU ; Jin LI
Chinese Journal of Blood Transfusion 2025;38(6):828-832
Objective: To evaluate the suitability of the existing hemolysis rate standards for locally processed red blood cell components by retrospectively analyzing 5-year hemolysis rate data at the end of storage. Methods: A total of 720 blood samples of three types of red blood cell components from our blood station from January 2019 to December 2023 were collected. Parameters included hemoglobin concentration (Hb), hematocrit (Hct), and free hemoglobin concentration (fHb). Hemolysis rate were taken as the control standard of 0.8% in accordance with the national standard. The hemolysis rates were compared against the national standard threshold of 0.8% (GB18469-2012), and annual trends of the detection parameters were observed. Results: The hemolysis rates (x-+s,%) of leukocyte-depleted whole blood at the end of storage were (0.038±0.023 8) in 2019, (0.049±0.039 5) in 2020, (0.043±0.040 7) in 2021, (0.049±0.030 7) in 2022, and (0.058±0.054 8) in 2023, respectively; The hemolysis rates (x-+s" />,%) of leukocyte-depleted suspended red blood cells at the end of storage were (0.093±0.050 2) in 2019, (0.086±0.049 5) in 2020, (0.123±0.072 3) in 2021, (0.122±0.052 1) in 2022, and (0.106±0.058 6) in 2023, respectively; The hemolysis rates (x-+s,%) of washed red blood cells at the end of storage were (0.127±0.038 2) in 2019, (0.150±0.066 5) in 2020, (0.121±0.052 2) in 2021, (0.124±0.038 9) in 2022, and (0.128±0.044 3) in 2023, respectively. Conclusion: Hemolysis rates at the end of blood storage of three red blood cell components were significantly lower than the limits specified in Quality Requirements for Whole Blood and Components (GB18469-2012), as well as standards from the EU, AABB and the United States. The results demonstrate excellent product quality control. A regional internal control standard of <0.2% is proposed for hemolysis rates at the end of storage.
7.Prediction of gastric cancer T staging using oral contrast-enhanced ultrasonography combined with contrast-enhanced CT
Aiqing LU ; Fei QIU ; Xin DONG ; Xiaoyan LI ; Xiuyun SUN ; Xuefeng LI ; Zhaoxin JIN ; Xiankai WANG ; Yong ZHANG
Chinese Journal of Radiological Health 2025;34(3):368-372
Objective To explore the value of oral contrast-enhanced ultrasonography (OCEUS) combined with contrast-enhanced CT in predicting preoperative T staging in patients with gastric cancer. Methods A retrospective analysis was conducted on 80 patients with gastric cancer confirmed via endoscopic biopsy or postoperative pathology at the First People’s Hospital of Jining from January 2021 to November 2024. The cohort included 56 males and 24 females, aged 38-79 years, with a median age of 55.9 years. All patients underwent both OCEUS and contrast-enhanced CT within one week prior to surgery. T staging of gastric cancer was determined using OCEUS, contrast-enhanced CT, or their combination. The results were compared with pathological T staging, and statistical differences in accuracy were analyzed. Results Pathological T staging identified T1 in 9 cases, T2 in 16 cases, T3 in 42 cases, and T4 in 13 cases. OCEUS indicated T1 in 6 cases, T2 in 14 cases, T3 in 50 cases, and T4 in 10 cases, with an accuracy rate of 80.0%. Contrast-enhanced CT indicated T1 in 4 cases, T2 in 12 cases, T3 in 52 cases, and T4 in 12 cases, with an accuracy rate of 75.0%. The combination of OCEUS and contrast-enhanced CT indicated T1 in 6 cases, T2 in 15 cases, T3 in 47 cases, and T4 in 12 cases, with an accuracy rate of 87.5%. The combined approach demonstrated significantly higher accuracy in preoperative T staging compared to either method alone (P < 0.05). Conclusion The combination of OCEUS and contrast-enhanced CT improves the accuracy of preoperative T staging in gastric cancer patients, providing valuable support for their diagnosis and treatment.
8.Triglyceride-glucose index and homocysteine in association with the risk of stroke in middle-aged and elderly diabetic populations
Xiaolin LIU ; Jin ZHANG ; Zhitao LI ; Xiaonan WANG ; Juzhong KE ; Kang WU ; Hua QIU ; Qingping LIU ; Jiahui SONG ; Jiaojiao GAO ; Yang LIU ; Qian XU ; Yi ZHOU ; Xiaonan RUAN
Shanghai Journal of Preventive Medicine 2025;37(6):515-520
ObjectiveTo investigate the triglyceride-glucose (TyG) index and the level of serum homocysteine (Hcy) in association with the incidence of stroke in type 2 diabetes mellitus (T2DM) patients. MethodsBased on the chronic disease risk factor surveillance cohort in Pudong New Area, Shanghai, excluding those with stroke in baseline survey, T2DM patients who joined the cohort from January 2016 to October 2020 were selected as the research subjects. During the follow-up period, a total of 318 new-onset ischemic stroke patients were selected as the case group, and a total of 318 individuals matched by gender without stroke were selected as the control group. The Cox proportional hazards regression model was used to adjust for confounding factors and explore the serum TyG index and the Hcy biochemical indicator in association with the risk of stroke. ResultsThe Cox proportional hazards regression results showed that after adjusting for confounding factors, the risk of stroke in T2DM patients with 10 μmol·L⁻¹
9.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy
Mao ZHAO ; Jin-Qiu FENG ; Ze-Qi GAO ; Ping WANG ; Jia FU
Progress in Biochemistry and Biophysics 2025;52(9):2267-2279
Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K-AKT-mTOR, Ras-Raf-MEK-ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.
10. Research progress in the treatment of early Alzheimer's disease with lecanemab
Panpan JIN ; Yang LIU ; Huizhen WU ; Panpan JIN ; Yang LIU ; Bo QIU ; Huizhen WU
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(2):207-214
Lecanemab is a new drug used to treat early Alzheimer's disease (AD) with mild cognitive impairment or mild dementia. It is a human anti-Aβ fibril monoclonal IgG1 antibody, which is injected intravenously into the patient, through the blood-brain barrier into the brain, clearing amyloid plaque, thereby slowing the rate of cognitive decline in patients and delaying disease progression. This article reviews the pharmacological studies, clinical studies, safety and limitations of lecanemab, in order to help clinical understand the current research status and existing achievements of this drug.

Result Analysis
Print
Save
E-mail