1.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
2.Analysis of Refractive Error Changes in Elementary School Children under 13 Years of Age before and after COVID-19 Pandemic: A Hospital-Based Study
Joong Dong RHO ; Woo Seok CHOE ; Yoo Jin KIM ; Jae Ho SHIN ; Tae Gi KIM
Annals of Optometry and Contact Lens 2024;23(2):64-70
Purpose:
To analyze changes in refractive error among elementary school children under the age of 13 who visited an outpatient clinic for eye examinations before and after the onset of the COVID-19 pandemic.
Methods:
A retrospective analysis of medical records was conducted to calculate the spherical equivalent refractive error of the right eye for 3,854 children aged 6 to 12 who attended our ophthalmology department from 2016 to 2023. We analyzed the average refractive error and myopia prevalence by year and subsequently performed a subgroup analysis by dividing the children into two age groups: 6-9 years old and 10-12 years old. To provide insight into long-term trends, data from 4,351 subjects aged 6-12 years from the 4th, 5th (2008-2012), and 7th (2016) Korea National Health and Nutrition Examination Surveys were also analyzed for reference.
Results:
The mean refractive error for subjects visiting our clinic throughout the study period was -1.51 ± 2.12 D. A trend of increasing myopic values in refractive error was observed from 2017 to 2021, with a more substantial change noted in 2020 compared to other years, though not reaching statistical significance. In the subgroup analysis, the change in refractive error for the 6-9-year-old group was more pronounced in 2020 but did not reach statistical significance, and no specific trend was identified in the 10-12-year-old group. Myopia prevalence exhibited a consistent increase since 2019 in the 6-9 age group, with a higher proportion of moderate myopia in 2020 compared to previous years. Conversely, no distinct trend was observed in the 10-12-year-old group.
Conclusions
Although statistical significance was not reached, it appears that the increase in indoor activities due to COVID-19 had an impact on the changes in refractive values for elementary school children, especially in the lower grades of elementary school in 2020.
3.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
4.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
5.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
6.Identification of signature gene set as highly accurate determination of metabolic dysfunction-associated steatotic liver disease progression
Sumin OH ; Yang-Hyun BAEK ; Sungju JUNG ; Sumin YOON ; Byeonggeun KANG ; Su-hyang HAN ; Gaeul PARK ; Je Yeong KO ; Sang-Young HAN ; Jin-Sook JEONG ; Jin-Han CHO ; Young-Hoon ROH ; Sung-Wook LEE ; Gi-Bok CHOI ; Yong Sun LEE ; Won KIM ; Rho Hyun SEONG ; Jong Hoon PARK ; Yeon-Su LEE ; Kyung Hyun YOO
Clinical and Molecular Hepatology 2024;30(2):247-262
Background/Aims:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression.
Methods:
Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD.
Results:
After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort.
Conclusions
We identified a signature gene set (i.e., CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6) with strong potential as a panel of diagnostic genes of MASLD-associated disease.
7.Loss of EMP2 Inhibits Melanogenesis of MNT1 Melanoma Cells via Regulation of TRP-2
Enkhmend ENKHTAIVAN ; Hyun Ji KIM ; Boram KIM ; Hyung Jung BYUN ; Lu YU ; Tuan Minh NGUYEN ; Thi Ha NGUYEN ; Phuong Anh DO ; Eun Ji KIM ; Kyung Sung KIM ; Hiệu Phùng HUY ; Mostafizur RAHMAN ; Ji Yun JANG ; Seung Bae RHO ; Ho LEE ; Gyeoung Jin KANG ; Mi Kyung PARK ; Nan-Hyung KIM ; Chang Ick CHOI ; Kyeong LEE ; Hyo Kyung HAN ; Jungsook CHO ; Ai Young LEE ; Chang Hoon LEE
Biomolecules & Therapeutics 2022;30(2):203-211
Melanogenesis is the production of melanin from tyrosine by a series of enzyme-catalyzed reactions, in which tyrosinase and DOPA oxidase play key roles. The melanin content in the skin determines skin pigmentation. Abnormalities in skin pigmentation lead to various skin pigmentation disorders. Recent research has shown that the expression of EMP2 is much lower in melanoma than in normal melanocytes, but its role in melanogenesis has not yet been elucidated. Therefore, we investigated the role of EMP2 in the melanogenesis of MNT1 human melanoma cells. We examined TRP-1, TRP-2, and TYR expression levels during melanogenesis in MNT1 melanoma cells by gene silencing of EMP2. Western blot and RT-PCR results confirmed that the expression levels of TYR and TRP-2 were decreased when EMP2 expression was knocked down by EMP2 siRNA in MNT1 cells, and these changes were reversed when EMP2 was overexpressed. We verified the EMP2 gene was knocked out of the cell line (EMP2 CRISPR/Cas9) by using a CRISPR/Cas9 system and found that the expression levels of TRP-2 and TYR were significantly lower in the EMP2 CRISPR/Cas9 cell lines. Loss of EMP2 also reduced migration and invasion of MNT1 melanoma cells. In addition, the melanosome transfer from the melanocytes to keratinocytes in the EMP2 KO cells cocultured with keratinocytes was reduced compared to the cells in the control coculture group. In conclusion, these results suggest that EMP2 is involved in melanogenesis via the regulation of TRP-2 expression.
8.Comparison of the Optimized Intraocular Lens Constants Calculated by Automated and Manifest Refraction for Korean
Youngsub EOM ; Dong Hui LIM ; Dong Hyun KIM ; Yong-Soo BYUN ; Kyung Sun NA ; Seong-Jae KIM ; Chang Rae RHO ; So-Hyang CHUNG ; Ji Eun LEE ; Kyong Jin CHO ; Tae-Young CHUNG ; Eun Chul KIM ; Young Joo SHIN ; Sang-Mok LEE ; Yang Kyung CHO ; Kyung Chul YOON ; In-Cheon YOU ; Byung Yi KO ; Hong Kyun KIM ; Jong Suk SONG ; Do Hyung LEE
Journal of the Korean Ophthalmological Society 2022;63(9):747-753
Purpose:
To derive the optimized intraocular lens (IOL) constants from automated and manifest refraction after cataract surgery in Korean patients, and to evaluate whether there is a difference in optimized IOL constants according to the refraction method.
Methods:
This retrospective multicenter cohort study enrolled 4,103 eyes of 4,103 patients who underwent phacoemulsification and in-the-bag IOL implantation at 18 institutes. Optimized IOL constants for the SRK/T, Holladay, Hoffer Q, and Haigis formulas were calculated via autorefraction or manifest refraction of samples using the same biometry and IOL. The IOL constants derived from autorefraction and manifest refraction were compared.
Results:
Of the 4,103 eyes, the majority (62.9%) were measured with an IOLMaster 500 followed by an IOLMaster 700 (15.2%). A total of 33 types of IOLs were used, and the Tecnis ZCB00 was the most frequently used (53.0%). There was no statistically significant difference in IOL constants derived from autorefraction and manifest refraction when IOL constants were optimized with a large number of study subjects. On the other hand, optimized IOL constants derived from autorefraction were significantly smaller than those from manifest refraction when the number of subjects was small.
Conclusions
It became possible to use the IOL constants optimized from Koreans to calculate the IOL power. However, if the IOL constant is optimized using autorefraction in a small sample group, the IOL constant tends to be small, which may lead to refractive error after surgery.
9.A Phase I/IIa Randomized Trial Evaluating the Safety and Efficacy of SNK01 Plus Pembrolizumab in Patients with Stage IV Non-Small Cell Lung Cancer
Eo Jin KIM ; Yong-Hee CHO ; Dong Ha KIM ; Dae-Hyun KO ; Eun-Ju DO ; Sang-Yeob KIM ; Yong Man KIM ; Jae Seob JUNG ; Yoonmi KANG ; Wonjun JI ; Myeong Geun CHOI ; Jae Cheol LEE ; Jin Kyung RHO ; Chang-Min CHOI
Cancer Research and Treatment 2022;54(4):1005-1016
Purpose:
The aim of this study is to evaluate the safety and efficacy of ex vivo activated and expanded natural killer (NK) cell therapy (SNK01) plus pembrolizumab in a randomized phase I/IIa clinical trial.
Materials and Methods:
Overall, 18 patients with advanced non–small cell lung cancer (NSCLC) and a programmed death ligand 1 tumor proportion score of 1% or greater who had a history of failed frontline platinum-based therapy were randomized (2:1) to receive pembrolizumab every 3 weeks +/– 6 weekly infusions of SNK01 at either 2×109 or 4×109 cells per infusion (pembrolizumab monotherapy vs. SNK01 combination). The primary endpoint was safety, whereas the secondary endpoints were the objective response rate (ORR), progression-free survival (PFS), overall survival, and quality of life.
Results:
Since no dose-limiting toxicity was observed, the maximum tolerated dose was determined as SNK01 4×109 cells/dose. The safety data did not show any new safety signals when SNK01 was combined with pembrolizumab. The ORR and the 1-year survival rate in the NK combination group were higher than those in patients who underwent pembrolizumab monotherapy (ORR, 41.7% vs. 0%; 1-year survival rate, 66.7% vs. 50.0%). Furthermore, the median PFS was higher in the SNK01 combination group (6.2 months vs. 1.6 months, p=0.001).
Conclusion
Based on the findings of this study, the NK cell combination therapy may consider as a safe treatment method for stage IV NSCLC patients who had a history of failed platinum-based therapy without an increase in adverse events.
10.PRR16/Largen Induces Epithelial-Mesenchymal Transition through the Interaction with ABI2 Leading to the Activation of ABL1 Kinase
Gyeoung Jin KANG ; Jung Ho PARK ; Hyun Ji KIM ; Eun Ji KIM ; Boram KIM ; Hyun Jung BYUN ; Lu YU ; Tuan Minh NGUYEN ; Thi Ha NGUYEN ; Kyung Sung KIM ; Hiệu Phùng HUY ; Mostafizur RAHMAN ; Ye Hyeon KIM ; Ji Yun JANG ; Mi Kyung PARK ; Ho LEE ; Chang Ick CHOI ; Kyeong LEE ; Hyo Kyung HAN ; Jungsook CHO ; Seung Bae RHO ; Chang Hoon LEE
Biomolecules & Therapeutics 2022;30(4):340-347
Advanced or metastatic breast cancer affects multiple organs and is a leading cause of cancer-related death. Cancer metastasis is associated with epithelial-mesenchymal metastasis (EMT). However, the specific signals that induce and regulate EMT in carcinoma cells remain unclear. PRR16/Largen is a cell size regulator that is independent of mTOR and Hippo signalling pathways. However, little is known about the role PRR16 plays in the EMT process. We found that the expression of PRR16 was increased in mesenchymal breast cancer cell lines. PRR16 overexpression induced EMT in MCF7 breast cancer cells and enhances migration and invasion. To determine how PRR16 induces EMT, the binding proteins for PRR16 were screened, revealing that PRR16 binds to Abl interactor 2 (ABI2). We then investigated whether ABI2 is involved in EMT. Gene silencing of ABI2 induces EMT, leading to enhanced migration and invasion. ABI2 is a gene that codes for a protein that interacts with ABL proto-oncogene 1 (ABL1) kinase. Therefore, we investigated whether the change in ABI2 expression affected the activation of ABL1 kinase. The knockdown of ABI2 and PRR16 overexpression increased the phosphorylation of Y412 in ABL1 kinase. Our results suggest that PRR16 may be involved in EMT by binding to ABI2 and interfering with its inhibition of ABL1 kinase. This indicates that ABL1 kinase inhibitors may be potential therapeutic agents for the treatment of PRR16-related breast cancer.

Result Analysis
Print
Save
E-mail