1.Comparison of Two Quinupristin–dalfopristin Susceptibility Testing Methods and Two Interpretive Criteria for Enterococcus faecium Bloodstream Isolates from Korean Hospitals
Yong Jun KWON ; Ha Jin LIM ; Soo Hyun KIM ; Seung A BYUN ; Ga Yeong LEE ; Ga-Gyeong KIM ; Seok Hoon JEONG ; Jeong Hwan SHIN ; Young Ah KIM ; Young UH ; Jong Hee SHIN
Annals of Laboratory Medicine 2025;45(6):630-634
Enterococcus faecium, particularly in its multidrug-resistant forms, causes invasive nosocomial infections. Given the limited data comparing the effectiveness of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the CLSI clinical breakpoints (CBPs) for quinupristin–dalfopristin (QD) resistance and the need to evaluate their practical application, we retrospectively investigated the susceptibility patterns of 287 E.faecium bloodstream isolates from Korean hospitals to QD using the updated EUCAST and CLSI CBPs and two antimicrobial susceptibility testing methods: disk diffusion (DD) and Sensititre broth microdilution (Sensititre). QD resistance rates were 5.9% (CLSI) and 18.8% (EUCAST) for DD and 22.6% (CLSI) and 28.2% (EUCAST) for Sensititre. The most prevalent QD resistance gene types among QD-resistant isolates were ermB+msrC+ or ermB– msrC+. Categorical agreement between DD and Sensititre ranged from 77.7% to 90.7%, depending on the testing method and CBPs applied. The EUCAST zone diameter CBPs more effectively help identify QD-resistant E. faecium isolates using the DD method than the CLSI zone diameter CBPs. In comparison, the CLSI minimum inhibitory concentration (MIC) CBPs provide more reliable results for resistance classification in the Sensititre method than EUCAST MIC CBPs. These findings would help improve clinical decision-making for treating multidrug-resistant E. faecium infections.
2.Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study
Jeung Hui PYO ; Soo Jin CHO ; Sung Chul CHOI ; Jae Hwan JEE ; Jeeyeong YUN ; Jeong Ah HWANG ; Goeun PARK ; Kyunga KIM ; Wonseok KANG ; Mira KANG ; Young hye BYUN
Ultrasonography 2024;43(4):250-262
Purpose:
This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging–derived proton density fat fraction (MRI-PDFF) as the reference standard.
Methods:
This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses.
Results:
TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710).
Conclusion
QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
3.Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study
Jeung Hui PYO ; Soo Jin CHO ; Sung Chul CHOI ; Jae Hwan JEE ; Jeeyeong YUN ; Jeong Ah HWANG ; Goeun PARK ; Kyunga KIM ; Wonseok KANG ; Mira KANG ; Young hye BYUN
Ultrasonography 2024;43(4):250-262
Purpose:
This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging–derived proton density fat fraction (MRI-PDFF) as the reference standard.
Methods:
This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses.
Results:
TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710).
Conclusion
QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
4.Clinical Efficacy of a Position-Responding Mandibular Advancement Device in Patients With Obstructive Sleep Apnea
Sung-Woon ON ; Dong-Kyu KIM ; Min Hyuk LEE ; Ji Hae LEE ; Kyung Chul LEE ; Soo-Hwan BYUN ; Seok Jin HONG
Clinical and Experimental Otorhinolaryngology 2024;17(4):302-309
Objectives:
. Although mandibular advancement device (MAD) treatment is effective for obstructive sleep apnea (OSA), some concerns remain regarding its potential therapeutic impact and side effects. Thus, we developed a novel MAD that auto-titrates depending on its position in patients with OSA. We conducted a clinical trial to determine the efficacy of an auto-titrating mandibular advancement device (AMAD) for treating OSA.
Methods:
. Fourteen patients diagnosed with OSA participated in this study. Polysomnography (PSG) was performed at the beginning of the clinical trial, and after 3 months of treatment, PSG with AMAD in situ was conducted.
Results:
. The mean scores for the Epworth Sleepiness Scale (ESS) and STOP-Bang were 8.21±4.21 and 5.00±1.00, respectively. After 3 months of AMAD treatment, the STOP-Bang scores improved to 3.75±1.06; however, the ESS scores did not show a significant change. Additionally, we observed statistically significant improvements in several respiratory parameters in the PSG data following AMAD treatment. These included reductions in the apnea-hypopnea index (AHI) (from 32.85±21.71 to 12.93±10.70), supine AHI (from 45.91±23.58 to 15.59±12.76), and lateral AHI (from 13.94±10.95 to 5.49±7.40). Improvements were also noted in the lowest O2 saturation (from 79.71±6.22 to 84.00± 5.71), total arousal number (from 191.14±112.07 to 86.57±48.80), and arousal index (from 33.76±21.00 to 15.05± 8.42). However, there were no significant changes in total sleep time, sleep efficiency, or mean oxygen saturation. Additionally, no major side effects were observed during treatment, specifically related to tooth or jaw pain.
Conclusion
. Our clinical trial found that AMAD improved PSG parameters and reduced the incidence of common side effects. Therefore, AMAD may be an effective alternative treatment for OSA.
5.Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study
Jeung Hui PYO ; Soo Jin CHO ; Sung Chul CHOI ; Jae Hwan JEE ; Jeeyeong YUN ; Jeong Ah HWANG ; Goeun PARK ; Kyunga KIM ; Wonseok KANG ; Mira KANG ; Young hye BYUN
Ultrasonography 2024;43(4):250-262
Purpose:
This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging–derived proton density fat fraction (MRI-PDFF) as the reference standard.
Methods:
This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses.
Results:
TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710).
Conclusion
QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
6.Clinical Efficacy of a Position-Responding Mandibular Advancement Device in Patients With Obstructive Sleep Apnea
Sung-Woon ON ; Dong-Kyu KIM ; Min Hyuk LEE ; Ji Hae LEE ; Kyung Chul LEE ; Soo-Hwan BYUN ; Seok Jin HONG
Clinical and Experimental Otorhinolaryngology 2024;17(4):302-309
Objectives:
. Although mandibular advancement device (MAD) treatment is effective for obstructive sleep apnea (OSA), some concerns remain regarding its potential therapeutic impact and side effects. Thus, we developed a novel MAD that auto-titrates depending on its position in patients with OSA. We conducted a clinical trial to determine the efficacy of an auto-titrating mandibular advancement device (AMAD) for treating OSA.
Methods:
. Fourteen patients diagnosed with OSA participated in this study. Polysomnography (PSG) was performed at the beginning of the clinical trial, and after 3 months of treatment, PSG with AMAD in situ was conducted.
Results:
. The mean scores for the Epworth Sleepiness Scale (ESS) and STOP-Bang were 8.21±4.21 and 5.00±1.00, respectively. After 3 months of AMAD treatment, the STOP-Bang scores improved to 3.75±1.06; however, the ESS scores did not show a significant change. Additionally, we observed statistically significant improvements in several respiratory parameters in the PSG data following AMAD treatment. These included reductions in the apnea-hypopnea index (AHI) (from 32.85±21.71 to 12.93±10.70), supine AHI (from 45.91±23.58 to 15.59±12.76), and lateral AHI (from 13.94±10.95 to 5.49±7.40). Improvements were also noted in the lowest O2 saturation (from 79.71±6.22 to 84.00± 5.71), total arousal number (from 191.14±112.07 to 86.57±48.80), and arousal index (from 33.76±21.00 to 15.05± 8.42). However, there were no significant changes in total sleep time, sleep efficiency, or mean oxygen saturation. Additionally, no major side effects were observed during treatment, specifically related to tooth or jaw pain.
Conclusion
. Our clinical trial found that AMAD improved PSG parameters and reduced the incidence of common side effects. Therefore, AMAD may be an effective alternative treatment for OSA.
7.Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study
Jeung Hui PYO ; Soo Jin CHO ; Sung Chul CHOI ; Jae Hwan JEE ; Jeeyeong YUN ; Jeong Ah HWANG ; Goeun PARK ; Kyunga KIM ; Wonseok KANG ; Mira KANG ; Young hye BYUN
Ultrasonography 2024;43(4):250-262
Purpose:
This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging–derived proton density fat fraction (MRI-PDFF) as the reference standard.
Methods:
This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses.
Results:
TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710).
Conclusion
QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
8.Clinical Efficacy of a Position-Responding Mandibular Advancement Device in Patients With Obstructive Sleep Apnea
Sung-Woon ON ; Dong-Kyu KIM ; Min Hyuk LEE ; Ji Hae LEE ; Kyung Chul LEE ; Soo-Hwan BYUN ; Seok Jin HONG
Clinical and Experimental Otorhinolaryngology 2024;17(4):302-309
Objectives:
. Although mandibular advancement device (MAD) treatment is effective for obstructive sleep apnea (OSA), some concerns remain regarding its potential therapeutic impact and side effects. Thus, we developed a novel MAD that auto-titrates depending on its position in patients with OSA. We conducted a clinical trial to determine the efficacy of an auto-titrating mandibular advancement device (AMAD) for treating OSA.
Methods:
. Fourteen patients diagnosed with OSA participated in this study. Polysomnography (PSG) was performed at the beginning of the clinical trial, and after 3 months of treatment, PSG with AMAD in situ was conducted.
Results:
. The mean scores for the Epworth Sleepiness Scale (ESS) and STOP-Bang were 8.21±4.21 and 5.00±1.00, respectively. After 3 months of AMAD treatment, the STOP-Bang scores improved to 3.75±1.06; however, the ESS scores did not show a significant change. Additionally, we observed statistically significant improvements in several respiratory parameters in the PSG data following AMAD treatment. These included reductions in the apnea-hypopnea index (AHI) (from 32.85±21.71 to 12.93±10.70), supine AHI (from 45.91±23.58 to 15.59±12.76), and lateral AHI (from 13.94±10.95 to 5.49±7.40). Improvements were also noted in the lowest O2 saturation (from 79.71±6.22 to 84.00± 5.71), total arousal number (from 191.14±112.07 to 86.57±48.80), and arousal index (from 33.76±21.00 to 15.05± 8.42). However, there were no significant changes in total sleep time, sleep efficiency, or mean oxygen saturation. Additionally, no major side effects were observed during treatment, specifically related to tooth or jaw pain.
Conclusion
. Our clinical trial found that AMAD improved PSG parameters and reduced the incidence of common side effects. Therefore, AMAD may be an effective alternative treatment for OSA.
9.Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study
Jeung Hui PYO ; Soo Jin CHO ; Sung Chul CHOI ; Jae Hwan JEE ; Jeeyeong YUN ; Jeong Ah HWANG ; Goeun PARK ; Kyunga KIM ; Wonseok KANG ; Mira KANG ; Young hye BYUN
Ultrasonography 2024;43(4):250-262
Purpose:
This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging–derived proton density fat fraction (MRI-PDFF) as the reference standard.
Methods:
This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses.
Results:
TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710).
Conclusion
QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
10.2 Cases of Intra-Labyrinthine Schwannomas With Different Treatment Options Based on Clinical Presentation
Jong Hwan LEE ; Ki-Jin KWON ; Jae Yong BYUN
Korean Journal of Otolaryngology - Head and Neck Surgery 2024;67(5):289-294
Vestibular schwannoma is a benign tumor that arises from the eighth cranial nerve and is the most common neoplasm in the internal auditory canal (IAC). It typically arises in the cerebellopontine angle or in IAC; however, in rare cases, they can arise within the labyrinth. These tumors arising in the labyrinth have been termed intra-labyrinthine schwannomas (ILS) and have different clinical features than the typical vestibular schwannomas. Clinical manifestations of an ILS typically include hearing loss, tinnitus, and vertigo, with unusual symptoms including a sense of fullness or imbalance. Temporal bone MRI is considered the most important test for diagnosing ILS. Tumors show nodular enhancement on T1-weighted images and filling defects on T2-weighted images. Treatment of ILS may include observation, microsurgical resection, and stereotactic radiosurgery depending on the location, size, and clinical presentation. In this paper, we present two cases diagnosed as ILS with different treatment options and provide a literature review for each case.

Result Analysis
Print
Save
E-mail