1.Exploration of Traditional Chinese and Western Medicine in Prevention and Treatment of DKD Based on Mitochondrial Autophagy Mediated by PINK1/Parkin Signaling Pathway: A Review
Runsheng LIU ; Xiaodong ZHANG ; Zhaoqing LI ; Jing WANG ; Jinglu ZHANG ; Lixia JIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):302-313
Diabetic kidney disease (DKD) is one of the more common chronic kidney diseases,and its causes are complex. DKD is very easy to progress to end-stage renal disease,and the current therapeutic effect still needs to be improved. As an important excretive organ of the human body, the kidney has physiological functions such as discharging metabolic waste, regulating fluid balance, and maintaining the stability of the body's internal environment. These highly complex biochemical processes all depend on the energy support provided by mitochondria. Mitochondrial dysfunction is a key factor causing kidney injury, and the imbalance of mitochondrial homeostasis is an important link leading to mitochondrial dysfunction. The occurrence and development of DKD are often accompanied by the imbalance of mitochondrial homeostasis in renal cells. Mitochondrial autophagy, as a means of regulating mitochondrial homeostasis, is very important for the prevention and treatment of DKD. The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway is one of the most classical pathways to regulate mitochondrial autophagy. Recent studies have found that some drugs can regulate the PINK1/Parkin signaling pathway to target mitochondrial homeostasis and exert renoprotective effects. In particular, traditional Chinese medicine has a significant effect on early and middle stage DKD by regulating PINK1/Parkin pathway-mediated mitochondrial autophagy. This article discussed the mechanism of PINK1/Parkin pathway in mitochondrial autophagy and DKD and reviewed the effect of PINK1/Parkin pathway-mediated mitochondrial autophagy on DKD. At the same time, it explored the therapeutic effect of traditional Chinese and western medicine on DKD mediated by PINK1/Parkin-mediated mitochondrial autophagy, aiming to broaden the ideas of traditional Chinese and western medicine for the prevention and treatment of DKD from the perspective of PINK1/Parkin regulating mitochondrial autophagy.
2.Clinical efficacy of escitalopram combined with transcutaneous cervical vagus nerve stimulation therapy for patients with major depressive disorder and its effect on plasma IL-6 and IL-10 levels
Jin LI ; Jinbo SUN ; Di WU ; Wenjun WU ; Runzhu SUN ; Shanshan XUE ; Yapeng CUI ; Huaning WANG ; Yihuan CHEN
Sichuan Mental Health 2025;38(1):7-13
BackgroundInvasive vagus nerve stimulation therapy has been approved for the adjunctive treatment of treatment-resistant depression, which may contribute to the anti-inflammatory properties of vagus nerve stimulation (VNS), whereas the efficacy of non-invasive transcutaneous cervical vagus nerve stimulation (tcVNS) in treating major depressive disorder (MDD) and its impact on plasma inflammatory factors remain unclear. ObjectiveTo observe the effect of escitaloprom combined with tcVNS on the status of depression, anxiety and sleep quality as well as the plasma levels of interleukin-6 (IL-6) and interleukin-10 (IL-10) in MDD patients, in order to provide references for the recovery and treatment of MDD patients. MethodsFrom August 21, 2019 to April 17, 2024, 45 patients who met the diagnostic criteria for MDD in the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5) were recruited from the psychosomatic outpatient clinic of the First Affiliated Hospital of Air Force Military Medical University. Subjects were divided into study group (n=23) and control group (n=22) using random number table method. All patients were treated with escitalopram. On this basis, study group added a 30-minute tcVNS therapy once a day for 4 weeks. While control group was given corresponding sham stimulation, and the duration of each stimulation lasted 30 seconds. Before and after 4 weeks of treatment, Hamilton Depression Scale-17 item (HAMD-17) was used to assess depressive symptoms, and HAMD-17 anxiety/somatization subfactor and insomnia subfactor were used to assess patients' anxiety/somatization symptoms and sleep quality. Levels of plasma IL-6 and IL-10 were measured by enzyme-linked immunosorbent assay (ELISA). ResultsThe generalized estimating equation model yielded a significant time effect for HAMD-17 total score, anxiety/somatization subfactor score and insomnia subfactor score in both groups (Wald χ2=315.226, 495.481, 82.420, P<0.01). After 4 weeks of treatment, HAMD-17 total score and anxiety/somatization subfactor score of study group were lower than those of control group, with statistically significant differences (Wald χ2=4.967, 32.543, P<0.05 or 0.01), while no statistically significant difference was found in the insomnia subfactor score between two groups (Wald χ2=0.819, P=0.366). Significant time effects were reported on plasma IL-6 and IL-10 levels in both groups (Wald χ2=21.792, 5.242, P<0.05 or 0.01). Compared with baseline data, a reduction in plasma IL-6 levels was detected in both groups (Wald χ2=22.015, 6.803, P<0.01), and an increase in plasma IL-10 levels was reported in study group (Wald χ2=5.118, P=0.024) after 4 weeks of treatment. ConclusionEscitalopram combined with tcVNS therapy is effective in improving depressive symptoms, anxiety/somatization symptoms and sleep quality in patients with MDD. Additionally, it helps reduce plasma IL-6 levels and increase IL-10 levels. [Funded by Shaanxi Provincial Key Research and Development Program-General Project (number, 2023-YBSF-185), www.clinicaltrials.gov number, NCT04037111]
3.Analysis of Differential Compounds of Poria cocos Medicinal Materials by Integrated Qualitative Strategy Based on UPLC-Q-Orbitrap-MS
Jiayuan WANG ; Xiaohan FAN ; Xiaoxiao WEI ; Rong CAO ; Jin WANG ; Lei WANG ; Fengqing XU ; Shunwang HUANG ; Deling WU ; Hongsu ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):148-156
ObjectiveTo establish a rapid analytical method for identifying the differential components in Poria cocos medicinal materials based on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), combined with mass defect filtering(MDF) and molecular network integration techniques. MethodsUPLC-Q-Orbitrap-MS was used for MS data acquisition and identification of P. cocos medicinal materials, with the help of MDF for the study of cleavage behavior and structural identification of triterpenoids. According to the similarity of MS/MS fragmentation patterns of each component, global natural product social molecular network(GNPS) was established, and Cytoscape 3.6.1 was used to screen molecular clusters with similar structures and the the structure of main compound classes were identified and confirmed. Multivariate statistical analyses such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen the differential components of the five P. cocos medicinal materials with the variable importance in the projection(VIP) value>1 and P<0.05 as the criteria. ResultsA total of 66 compounds were identified by database comparison, 8 compounds were newly identified by MDF, 28 compounds were newly identified by GNPS, and a total of 102 chemical compounds were identified, including 43 triterpenoids, 16 saccharides, 26 amino acids and peptides, 3 nucleosides, and 14 other compounds. Triterpenoids were predominant in Poriae Cutis and wild Fushen, amino acids and peptides were the most abundant in Poria and cultivated Fushen, carbohydrates were the most abundant in Poriae Cutis. Type Ⅰ and Ⅱ triterpenoids had higher amounts in Poria and cultivated Fushen, type Ⅲ triterpenoids were more abundant in Poriae Cutis, all four types of triterpenoids were higher in Fushenmu, and type Ⅰ, Ⅱ, and Ⅳ triterpenoids were higher in wild Fushen. A total of 12 common differential chemical constituents were screened, including serine, guanosine, gallic acid, 2-octenal, maltotriose, trametenolic acid, dehydroeburicoic acid, dehydrotrametenolic acid, poricoic acid A, poricoic acid B, poricoic acid E and G, but the relative contents of them varied significantly among different medicinal materials. ConclusionAmong the five P. cocos medicinal materials, the types of constituents are generally similar, but their relative contents differed significantly among these medicinal materials, especially in the distribution of triterpenoids. The integration of UPLC-Q-Orbitrap-MS, MDF and GNPS can provide a reference for the rapid qualitative analysis of other Chinese medicines.
4.Exploration of Traditional Chinese and Western Medicine in Prevention and Treatment of DKD Based on Mitochondrial Autophagy Mediated by PINK1/Parkin Signaling Pathway: A Review
Runsheng LIU ; Xiaodong ZHANG ; Zhaoqing LI ; Jing WANG ; Jinglu ZHANG ; Lixia JIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):302-313
Diabetic kidney disease (DKD) is one of the more common chronic kidney diseases,and its causes are complex. DKD is very easy to progress to end-stage renal disease,and the current therapeutic effect still needs to be improved. As an important excretive organ of the human body, the kidney has physiological functions such as discharging metabolic waste, regulating fluid balance, and maintaining the stability of the body's internal environment. These highly complex biochemical processes all depend on the energy support provided by mitochondria. Mitochondrial dysfunction is a key factor causing kidney injury, and the imbalance of mitochondrial homeostasis is an important link leading to mitochondrial dysfunction. The occurrence and development of DKD are often accompanied by the imbalance of mitochondrial homeostasis in renal cells. Mitochondrial autophagy, as a means of regulating mitochondrial homeostasis, is very important for the prevention and treatment of DKD. The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway is one of the most classical pathways to regulate mitochondrial autophagy. Recent studies have found that some drugs can regulate the PINK1/Parkin signaling pathway to target mitochondrial homeostasis and exert renoprotective effects. In particular, traditional Chinese medicine has a significant effect on early and middle stage DKD by regulating PINK1/Parkin pathway-mediated mitochondrial autophagy. This article discussed the mechanism of PINK1/Parkin pathway in mitochondrial autophagy and DKD and reviewed the effect of PINK1/Parkin pathway-mediated mitochondrial autophagy on DKD. At the same time, it explored the therapeutic effect of traditional Chinese and western medicine on DKD mediated by PINK1/Parkin-mediated mitochondrial autophagy, aiming to broaden the ideas of traditional Chinese and western medicine for the prevention and treatment of DKD from the perspective of PINK1/Parkin regulating mitochondrial autophagy.
5.Successful treatment of biliary fistula after Beger surgery by oral choledochoscopy-assisted percutaneous-endoscopic rendezvous technique: A case report
Yuxin WANG ; Weigang GU ; Zheng JIN ; Xiaofeng ZHANG
Journal of Clinical Hepatology 2025;41(2):333-336
Duodenum-preserving pancreatic head resection, also known as Beger surgery, has a high incidence rate of bile duct injury after surgery, while the treatment modality for bile duct injury depends on the severity of the injury, and endoscopic therapy is often challenging in case of severe bile duct injury. Recently a patient with biliary fistula after Beger surgery was admitted to Affiliated Hangzhou First People’s Hospital, Westlake University, and successful diagnosis and treatment were achieved through oral choledochoscopy-assisted percutaneous-endoscopic rendezvous technique.
6.Effect of miR-130a-3p targeting PPAR-γ on epithelial-mesenchymal transition in silica-induced pulmonary fibrosis
Xiaohui HAO ; Qian LI ; Yixuan JIN ; Qinxin ZHANG ; Yudi WANG ; Fang YANG
Journal of Environmental and Occupational Medicine 2025;42(2):188-195
Background At present, the treatment of silicosis is still limited, and no method is available to cure the disease. miRNAs are involved in the process of fibrosis at the transcriptional level by directly degrading target gene mRNA or inhibiting its translation. However, how miR-130a-3p regulates silicosis fibrosis has not been fully elucidated yet. Objective To investigate whether miR-130a-3p promotes epithelial-mesenchymal transition (EMT) by inhibiting peroxisome proliferators-activated receptors gamma (PPAR-γ), thereby pro-moting the process of silicotic fibrosis. To identify effective new targets for the treatment of silicotic fibrosis. Methods (1) Animal experiments: C57BL/6J mice were intratracheally injected with a one-time dose of 10 mg silica suspension (dissolved in 100 μL saline) as positive lung exposure. A silicosis model group was established 28 d after the exposure. A control group was injected with the same amount of normal saline into the trachea. Hematoxylin-eosin staining and Sirius red staining were used to observe the pathological changes and collagen deposition in lung tissues respectively. Realtime fluorescence-based quantitative polymerase chain reaction (RT-qPCR) was used to assay the expression of miR-130a-3p and PPAR-γ mRNA in lung tissues. Western blotting was used to detect the protein expression of PPAR-γ, transforming growth factor (TGF)-β1, E-cadherin, α-smooth muscle actin (α-SMA), and Collagen Ⅰ in lung tissues. (2) Cells experiments: Mouse lung epithelial cells (MLE-12) were induced with 5 µg·L−1 TGF-β1 for different time (0, 12, 24, 48 h). RT-qPCR was used to detect the expression of miR-130a-3p and PPAR-γ mRNA in cells. The binding relationship between miR-130a-3p and PPAR-γ mRNA was verified by dual luciferase reporter gene assay. MLE-12 cells were stimulated by 5 µg·L−1 TGF-β1 after transfection of miR-130a-3p inhibitor, and Western blotting was used to measure the protein expression of PPAR-γ, E-cadherin, and α-SMA in the TGF-β1-induced cells. Results In the silicosis model group, the alveolar septum was widened and the pulmonary nodules were formed. The Sirius red staining collagen deposition in pulmonary nodules indicated that a silicosis fibrosis model was successfully established. The expressions of TGF-β1, α-SMA, and Collagen Ⅰ proteins were increased, and the expressions of E-cadherin and PPAR-γ proteins were decreased in lung tissues of the silicosis group, compared with the control group (P<0.05 or P<0.01). The expression of miR-130a-3p was increased and the expression of PPAR-γ mRNA was decreased in lung tissues of the silicosis model (P<0.01). The expression of miR-130a-3p was significantly increased, while the expression of PPAR-γ mRNA was decreased in the TGF-β1 induced MLE-12 cells (P<0.05 or P<0.01). The dual luciferase reporter assay showed a direct relationship between miR-130a-3p and PPAR-γ mRNA in MLE-12 cells. The transfection of miR-130a-3p inhibitor in the TGF-β1 induced MLE-12 cells inhibited the decrease of PPAR-γ and E-cadherin proteins, and the increase of α-SMA protein in the MLE-12 cells induced by TGF-β1 (P<0.05 or P<0.01). Conclusion miR-130a-3p promotes the development of silicosis fibrosis by targeting PPAR-γ to increase pulmonary EMT.
7.Comparison of myopia progression before and after discontinuation of low-concentration atropine in children wearing orthokeratology lenses
Yaozeng WANG ; Pan LI ; Jin WANG ; Zikang LU
International Eye Science 2025;25(1):134-139
AIM: To compare the progression of myopia in children wearing orthokeratology lenses combined with low-concentration atropine before and after drug withdrawal, to determine the rebound effect of drug withdrawal in orthokeratology lens wearers, and to analyze its causes based on changes in pupil diameter.METHODS:A prospective case-control study was conducted to collect 80 children with myopia who were treated with orthokeratology lenses combined with 0.01% atropine ophthalmic gel at the Xi'an No.1 Hospital from January to June 2022. One year later, they were divided into a drug withdrawal group(Group A, 40 cases)and a continuous medication group(Group B, 40 cases)based on whether they stopped taking the medication. The progression of myopia before and after drug withdrawal was observed by analyzing changes in axial length(AL)and spherical equivalent(SE)in the group A within 1 a before and after drug withdrawal. The changes in AL, pupil diameter(PD), and SE were compared between the group A and group B within 2 a, and the correlation between PD and AL growth was analyzed.RESULTS:In the group A, the AL increased by 0.17±0.23 and 0.29±0.18 mm at 0.5 and 1 a after drug withdrawal, respectively, which were both greater than before drug withdrawal(t=5.318, 2.983, both P<0.001). There was no statistically significant difference in SE growth between the two time points(P>0.05). There were no statistically significant differences in AL and PD between the group A and group B at baseline, 0.5 and 1 a during combined medication(all P>0.05). At 1.5 a, the AL growth of the group A was greater than that of the group B(0.32±0.27 mm vs 0.26±0.20 mm, t=7.363, P<0.001), and the PD was smaller than that of the group B(3.60±1.25 mm vs 4.12±1.92 mm, t=-7.541, P<0.001). At 2 a, the AL growth of the group A was greater than that of the group B(0.44±0.18 mm vs 0.32±0.14 mm, t=5.709, P<0.001), and the PD was smaller than that of the group B(3.67±1.31 mm vs 4.02±1.67 mm, t=-4.281, P<0.001). Correlation analysis showed a negative correlation between PD and AL growth at 0.5 and 1 a follow-ups over 2 a(R2=-0.156, -0.190, both P<0.001).CONCLUSION: After stopping low-concentration atropine in children wearing orthokeratology lenses, AL increased more rapidly than before drug withdrawal, PD decreased, and SE changed little. Compared with continuous medication, discontinuation of medication led to faster progression of AL with little change in diopter, and the larger the PD during orthokeratology lens wear, the slower the progression of AL.
8.Effect of Wulao Qisun Prescription on Proliferation and Osteogenic Differentiation of AS Fibroblasts by Regulating Wnt/β-catenin Signaling Pathway
Juanjuan YANG ; Ping CHEN ; Haidong WANG ; Zhendong WANG ; Haolin LI ; Zhimin ZHANG ; Yuping YANG ; Weigang CHENG ; Jin SU ; Jingjing SONG ; Dongsheng LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):67-73
ObjectiveTo investigate the effect and underlying mechanism of the Wulao Qisun prescription on pathological new bone formation in ankylosing spondylitis (AS). MethodsSynovial fibroblasts were isolated from the hip joints of AS patients and observed under a microscope to assess cell morphology. The cells were identified using immunofluorescence staining. The isolated AS fibroblasts were divided into blank group, low drug-containing serum group, medium drug-containing serum group, high drug-containing serum group, and positive drug group. After drug intervention, cell proliferation was measured using the cell counting kit-8 (CCK-8) assay to observe fibroblast growth and determine the optimal intervention time. Alkaline phosphatase (ALP) activity was measured using the alkaline phosphatase assay. Protein expression of osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (Runx2) was detected by Western blot. The mRNA expression levels of Wnt5a, β-catenin, and Dickkopf-1 (DKK-1) were measured by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the blank group, each drug-containing serum group of Wulao Qisun prescription and the positive drug group inhibited the proliferation of AS fibroblasts and reduced ALP expression (P<0.01). Compared with the blank group, the low drug-containing serum group of Wulao Qisun prescription downregulated β-catenin mRNA expression (P<0.05). The medium and high drug-containing serum groups and the positive drug group significantly downregulated Wnt5a and β-catenin mRNA expression (P<0.05, P<0.01), with the positive drug group showing the most pronounced effect (P<0.01). The high drug-containing serum group and the positive drug group significantly upregulated DKK-1 mRNA expression (P<0.01). Compared with the blank group, the low drug-containing serum group of Wulao Qisun prescription inhibited the expression of OPN and Runx2 proteins (P<0.05, P<0.01), while the medium and high drug-containing serum groups and the positive drug group inhibited the expression of OCN, OPN, and Runx2 proteins (P<0.05, P<0.01). ConclusionThe Wulao Qisun prescription can inhibit the proliferation and osteogenic differentiation of AS fibroblasts, thereby delaying the formation of pathological new bone in AS. The possible mechanism involves the regulation of Wnt/β-catenin-related gene expression, further inhibiting the transcription of downstream target genes.
9.Yishen Huashi Granules Protect Kidneys of db/db Mice via p38 MAPK Signaling Pathway
Kaidong ZHOU ; Sitong WANG ; Ge JIN ; Yanmo CAI ; Xin ZHOU ; Yunhua LIU ; Xinxue ZHANG ; Min ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):58-68
ObjectiveTo explore the mechanism of Yishen Huashi granules in alleviating renal tubular epithelial cell injury and relieving diabetic kidney disease by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. MethodsThe db/db mice of 12 weeks old were randomly assigned into model , dapagliflozin (1.6 mg·kg-1), and Yishen Huashi granules (4.7 g·kg-1), and db/m mice were used as the control group. The general conditions of mice were observed, and fasting blood glucose and 24-h urinary protein and albumin-to-creatinine ratio (ACR) were measured at weeks 0 and 12 of administration. After 12 weeks of treatment, the levels of serum creatinine (SCr), blood urea (UREA), triglycerides (TG), total cholesterol (TC), and low density lipoprotein (LDL) were measured. The pathological changes in the renal tissue were observed by hematoxylin-eosin (HE) staining, Periodic acid-Schiff (PAS) staining, Mallory staining, and transmission electron microscopy. Real-time PCR was employed to determine the mRNA levels of monocyte chemotactic protein-1 (MCP-1) and CC chemokine receptor-2 (CCR2) in the renal tissue of mice. The immunohistochemical assay was employed to examine the expression of p38, phospho-p38 (p-p38), MCP-1, and CCR2 in the renal tissue of mice. Western blotting was employed to measure the protein levels of p-p38, p38, MCP-1, and CCR2 in the renal tissue of mice.HK-2 cells cultured in vitro were grouped as follows: negative control, high glucose(30 mmol·L-1), Yishen Huashi granule-containing serum, and SB203580. After 48 h of cell culture in each group, RNA were extracted and the levels of MCP-1, and CCR2 mRNA were determined by Real-time PCR,proteins were extracted and the levels of p38, p-p38, MCP-1, and CCR2 were determined by Western blot. ResultsThe in vivo experiments showed that before treatment, other groups had higher body weight, blood glucose level, 24 h urinary protein, and ACR than the control group (P<0.05,P<0.01). After 12 weeks of treatment, compared with the model group, the Yishen Huashi granules group showed improved general conditions, a decreasing trend in body weight, lowered levels of blood glucose, 24-h urinary protein, and ACR (P<0.01), reduced SCr and UREA (P<0.01), and declined levels of TC, TG, and LDL (P<0.05,P<0.01). Compared with the model group, the Yishen Huashi granules group showed alleviated damage and interstitial fibrosis in the renal tissue as well as reductions in glomerular foot process fusion and basement membrane thickening. Moreover, the Yishen Huashi granules group showed down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01), reduced positive expression of p-p38, MCP-1, and CCR2 (P<0.01), and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2 (P<0.05) in the renal tissue. The cell experiment showed that compared with the high glucose group, the Yishen Huashi granule-containing serum group showcased down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01) and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2(P<0.05,P<0.01). ConclusionYishen Huashi granules can regulate glucose-lipid metabolism, reduce 24 h urinary protein and ACR, improve the renal function, alleviate the renal tubule injury caused by high glucose, and protect renal tubule epithelial cells in db/db mice by reducing MCP-1/CCR2 activation via the p38 MAPK signaling pathway.
10.The Effect of Modified Ditan Decoction (涤痰汤) on Cognitive Function and Resting-State Functional Magnetic Resonance Imaging of the Brain in Chronic Intermittent Hypoxia Model Rats
Naijie CHEN ; Xiaoting WANG ; Fengsheng XU ; Shuanghong SHEN ; Zuanfang LI ; Qin CHEN ; Jin CHEN ; Runhua WU
Journal of Traditional Chinese Medicine 2025;66(1):71-78
ObjectiveTo explore the effect of modified Ditan Decoction (涤痰汤) on chronic intermittent hypoxia cognitive function and the potential function mechanism. MethodsTwenty-four Sprague-Dawley (SD) rats were randomly divided into a normal group, a model group, and a modified Ditan Decoction group, with eight rats in each group. Rats in the modified Ditan Decoction group were administered the decoction by gavage at 14.8 ml/(kg·d), while the normal group and the model group received the same dose of normal saline. Thirty minutes after daily gavage, the rats in all three groups were placed in an intermittent hypoxia chamber. The oxygen concentration for the model group and the modified Ditan Decoction group was adjusted daily for 8 hours using a computer program to establish the model, while the normal group was exposed to the same airflow rate of ambient air. The intervention was continued for 12 weeks to establish a chronic intermittent hypoxia rat model. The Y-maze test was used to evaluate spatial working memory in the rats. Resting-state functional magnetic resonance imaging (rs-fMRI) was performed to detect whole-brain regional homogeneity (ReHo) and seed-based functional connectivity (FC). Brain regions showing significant differences in rs-fMRI were selected for further analysis. Immunofluorescence was used to detect β-amyloid (Aβ) deposition and the number of ionized calcium-binding adapter molecule 1 (IBA1)-positive microglial cells. Immunohistochemistry was employed to assess the expression of synaptophysin (SYP), the excitatory synapse marker vesicular glutamate transporter 1 (Vglut1), and the inhibitory synapse marker vesicular γ-aminobutyric acid transporter (VGAT). ResultsCompared with the normal group, the model group showed a reduced spontaneous alternation rate in the Y-maze test. The smoothed Z-score standardized regional homogeneity (SzReHo) value in the left entorhinal cortex significantly increased, and the FC value from this seed point to the left basal forebrain significantly reduced. Additionally, the model group exhibited significantly higher Aβ fluorescence intensity and Iba1 positivity in the left entorhinal cortex, decreased expression of SYP, Vglut1, and VGAT, along with an increased Vglut1/VGAT ratio (P<0.05 or P<0.01). Compared to the model group, the modified Ditan Decoction group demonstrated an increased spontaneous alternation rate, a significantly reduced SzReHo value in the left entorhinal cortex, and a significantly increased FC value from this region to the left basal forebrain. Furthermore, this group showed significantly lower Aβ fluorescence intensity and Iba1 positivity in the left entorhinal cortex, increased levels of SYP, Vglut1, and VGAT, and a decreased Vglut1/VGAT ratio (P<0.05 or P<0.01). ConclusionModified Ditan Decoction can reconstruct the projection from the left basal forebrain to the entorhinal cortex in chronic intermittent hypoxia, thereby reducing Aβ aggregation and excessive microglial activation in the left entorhinal cortex. This process improves the excitation/inhibition imbalance caused by synaptic remodeling, ultimately enhancing cognitive function in rats of chronic intermittent hypoxia.

Result Analysis
Print
Save
E-mail