1.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
2.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
3.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
4.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
5.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
6.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
7.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
8.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
10.The Clinical Impact of β-Blocker Therapy on Patients With Chronic Coronary Artery Disease After Percutaneous Coronary Intervention
Jiesuck PARK ; Jung-Kyu HAN ; Jeehoon KANG ; In-Ho CHAE ; Sung Yun LEE ; Young Jin CHOI ; Jay Young RHEW ; Seung-Woon RHA ; Eun-Seok SHIN ; Seong-Ill WOO ; Han Cheol LEE ; Kook-Jin CHUN ; DooIl KIM ; Jin-Ok JEONG ; Jang-Whan BAE ; Han-Mo YANG ; Kyung Woo PARK ; Hyun-Jae KANG ; Bon-Kwon KOO ; Hyo-Soo KIM
Korean Circulation Journal 2022;52(7):544-555
Background and Objectives:
The outcome benefits of β-blockers in chronic coronary artery disease (CAD) have not been fully assessed. We evaluated the prognostic impact of β-blockers on patients with chronic CAD after percutaneous coronary intervention (PCI).
Methods:
A total of 3,075 patients with chronic CAD were included from the Grand DrugEluting Stent registry. We analyzed β-blocker prescriptions, including doses and types, in each patient at 3-month intervals from discharge. After propensity score matching, 1,170 pairs of patients (β-blockers vs. no β-blockers) were derived. Primary outcome was defined as a composite endpoint of all-cause death and myocardial infarction (MI). We further analyzed the outcome benefits of different doses (low-, medium-, and high-dose) and types (conventional or vasodilating) of β-blockers.
Results:
During a median (interquartile range) follow-up of 3.1 (3.0–3.1) years, 134 (5.7%) patients experienced primary outcome. Overall, β-blockers demonstrated no significant benefit in primary outcome (hazard ratio [HR], 0.88; 95% confidence interval [CI], 0.63–1.24), all-cause death (HR, 0.87; 95% CI, 0.60–1.25), and MI (HR, 1.25; 95% CI, 0.49–3.15). In subgroup analysis, β-blockers were associated with a lower risk of all-cause death in patients with previous MI and/ or revascularization (HR, 0.38; 95% CI, 0.14–0.99) (p for interaction=0.045). No significant associations were found for the clinical outcomes with different doses and types of β-blockers.
Conclusions
Overall, β-blocker therapy was not associated with better clinical outcomes in patients with chronic CAD undergoing PCI. Limited mortality benefit of β-blockers may exist for patients with previous MI and/or revascularization.

Result Analysis
Print
Save
E-mail