1.Cyclin F Expression in Clear Cell Renal Cell Carcinoma and Its Effect on Biological Behavior of Renal Carcinoma Cell Lines
Min SU ; Yan WANG ; Jie HUA ; Tianyun WANG ; Shengnan XU ; Xiang KUI
Cancer Research on Prevention and Treatment 2025;52(6):474-480
Objective To investigate the expression of Cyclin F in clear cell renal cell carcinoma (ccRCC), its clinicopathological characteristics, and its effect on the biological behavior of renal cancer cell lines Methods RT-qPCR and Western blot were used to detect the mRNA and protein expression of Cyclin F in fresh ccRCC specimens. Immunohistochemistry assay was performed to detect the expression of Cyclin F protein in 80 paraffin samples. CCK-8 assay, scratch assay, and flow cytometry were conducted to determine the effects of Cyclin F overexpression on the proliferation, migration, and apoptosis of renal cancer cell lines. Results The expression of Cyclin F in cancer tissues was higher than that in adjacent tissues at the mRNA level (P<
2.Effect of knee isokinetic training on mild to moderate muscle spasticity of the lower limbs in stroke patients
Yayuan DAI ; Xiaojun WANG ; Jie YIN ; Qiuping DONG ; Min SU
Chinese Journal of Cerebrovascular Diseases 2024;21(3):167-174
Objective To observe the effect of knee isometric training on mild to moderate lower limb muscle spasticity in stroke patients.Methods A total of 130 stroke hemiplegia patients were prospectively included in this study.They were admitted to Xiangcheng People's Hospital of Suzhou City between August 2021 and December 2023 and numbered according to the order of collection.The patients were then randomly assigned to either the control group or the isokinetic group using a random number table.Each group consisted of 65 cases.Both groups underwent conventional rehabilitation training(5 days a week,40 minutes per day),with the isokinetic group receiving additional isokinetic muscle training(5 days a week,20 minutes per day)on top of the conventional rehabilitation training.The treatment period lasted for 6 weeks.The surface electromyographic signals of the rectus femoris muscle on the affected side were analyzed for their root-mean-square(RMS),integral electromyographic(iEMG)values,the modified Ashworth scale(MAS)scores,knee flexors and extensors peak torque and its ratio,the Fugl-Meyer assessment scale-lower extremity(FMA-LE)scores,and the 10 m walk test were used before and after the treatments to compare the surface electromyography of rectus femoris,the degree of muscle spasticity and exercise capacity of the lower extremities of the two groups.Results Prior to treatment,there were no statistically significant differences between the two groups in terms of the RMS of the rectus femoris muscle,iEMG values,MAS scores,peak torque of the flexor and extensor muscles and their ratio,FMA-LE score,and step speed(all P>0.05).RMS of the rectus femoris muscle,iEMG values,MAS scores,peak torque of the knee flexors and extensors and their ratios,FMA-LE scores,and step speed improved in control group after treatment compared to before treatment([12.3±2.2]μV vs.[15.5± 2.9]μV,[24.8±2.3]μV·s vs.[29.2±3.1]μV·s,[1.34±0.15]points vs.[1.56± 0.25]points,[20.8±3.4]N·m vs.[12.3±2.5]N·m,[34.5±2.3]N·m vs.[26.3±3.6]N·m,0.60±0.16 vs.0.47±0.14,[26.1±2.9]points vs.[21.3±2.4]points,[0.61±0.14]m/s vs.[0.46±0.15]m/s;all P<0.05).Rectus femoris muscle RMS,iEMG values,MAS scores,peak torque of the flexor and extensor muscles and their ratio,FMA-LE scores and step speed after treatment in the isokinetic group were(10.9±1.8)μV,(22.4±2.1)μV·s,(1.25±0.18)points,(28.7±3.0)N·m,(41.5±2.8)N·m,0.69±0.18,(29.0±2.3)points,(0.69±0.18)m/s,compared with pretreatment(respectively[15.4±2.2]μV,[29.6±3.0]μV·s,[1.58±0.34]points,[12.6± 2.3]N·m,[26.1±3.1]N·m,0.48±0.17,[21.5±2.1]points,[0.48±0.17]m/s)and control group after treatment,the differences were statistically significant(all P<0.05).Before treatment,the differences in rectus femoris muscle RMS and iEMG values between patients with mild spasticity and patients with moderate spasticity in the isokinetic group and the corresponding patients with mild spasticity and moderate spasticity within the control group were not statistically significant(all P>0.05).After treatment,the rectus femoris muscle RMS and iEMG values in patients with mild spasticity within the isokinetic group([10.2±1.0]μV and[20.2±2.0]μV·s,respectively)were statistically different from those before treatment([14.1±2.3]μV and[28.1±3.2]μV·s,respectively)and those after treatment in patients with mild spasticity within the control group([11.4±1.7]μV and[23.6±2.5]μV·s respectively;all P<0.05);the rectus femoris muscle RMS and iEMG values in patients with moderate spasticity within the isokinetic group improved compared with the pre-treatment period([11.8±1.5]μV vs.[16.9±2.6)μV,and[24.9±2.2]μV·s vs.[31.3±3.8]μV·s,respectively;both P<0.05),and with the control group after treatment(RMS and iEMG values of[13.2±2.5]μV and[26.1± 2.7]μV·s,respectively),the difference in RMS was statistically significant(P<0.01),and the difference in iEMG values was not statistically significant(P>0.05).Conclusion Isokinetic muscle training has a positive effect on improving mild-to-moderate muscle spasticity of the lower limb knee extension,and the effect is more significant the lighter the degree of spasticity.
3.Improvement mechanism study of kushenol F on ulcerative colitis mice by regulating gut microbiota and immune response
Xudong HE ; Chengzhu SONG ; Haoyu NI ; Yunkai HU ; Min LI ; Dajun CHEN ; Wentao SU ; Jie YU ; Xingxin YANG
China Pharmacy 2024;35(17):2088-2095
OBJECTIVE To explore the action mechanism of kushenol F (KSCF) in treating ulcerative colitis (UC) in mice. METHODS The potential targets of KSCF intervening in UC were predicted with network pharmacology and molecular docking. C57BL/6J mice were randomly divided by body weight into model group, positive control group (sulfasalazine, 703 mg/kg), KSCF group (100 mg/kg), and normal group, with 6 mice per group. The UC model of mice was induced by dextran sulfate sodium solution. During the modeling period, the mice were given relevant medicine intragastrically, once a day, for 7 consecutive days. After the last administration, the disease activity index (DAI) of the mice was scored; the length of the mice’s colon was measured; pathological changes in the colon tissue of mice were observed; the levels of lipopolysaccharide (LPS) in serum, myeloperoxidase (MPO), nitric oxide (NO) and superoxide dismutase (SOD) in the colon were detected in mice; the expression levels of occludin and ZO-1 in colon tissue of mice were detected; the proportions of CD3+T, CD4+T, and CD8+T lymphocytes in the spleen and the ratio of CD4+/CD8+ were detected; changes in colonic microbiota were analyzed by 16S rDNA sequencing. RESULTS Results of network pharmacology indicated that KSCF may treat UC by regulating signaling pathways such as phosphatidylinositol-3 kinase/protein kinase B (PI3K/AKT) and nuclear factor kappa B (NF- κB). Molecular docking results showed that KSCF bound most stably with NF-κB p65 protein. Animal experiment results demonstrated that, compared with the model group, the pathological characteristics of colon tissue in mice were improved in KSCF group. DAI scores, serum levels of LPS, the levels of MPO,NF-κB p65 phosphorylation and NLRP3 protein expression in the colon, and the proportion of CD8+T lymphocytes in the spleen were reduced significantly (P<0.05). Body weight, SOD levels, expression levels of occludin and ZO-1 in the colon, proportions of CD3+T and CD4+T lymphocytes, and the CD4+/CD8+ ratio in the spleen were significantly increased (P<0.05); the abundance of Firmicutes, Actinobacteria, Akkermansia, and Lactobacillus genera were increased, while Proteobacteria decreased; the microbial community structure tended towards that of the normal group. CONCLUSIONS KSCF alleviates UC by restoring intestinal microbial imbalance, enhancing immune response, and inhibiting colonic inflammatory responses, thereby improving intestinal barrier integrity.
4.Construction and application of sub-specialty nursing quality standard in orthopedics department
Yang HONG ; Jie WANG ; Xiafen ZHANG ; Dan ZHAO ; Min CHENG ; Min SU
Chinese Journal of Practical Nursing 2024;40(9):716-721
The current situation of the construction and application of orthopaedic subspecialty nursing quality standards at home and abroad is reviewed, and the overview of orthopaedic subspecialty nursing quality standards, theoretical foundations, the content of the standard construction, the form and results of the application, and the shortcomings and outlooks are elaborated and illustrated, with a view to providing theoretical references for the further improvement and application of China′s orthopaedic subspecialty nursing quality standard system, and providing scientific suggestions and reflections for the promotion of the high-quality development of orthopaedic subspecialty nursing.
5.Wnt signaling pathway is involved in differentiation of embryonic stem cells into thymic epithelial progenitor cells together with autoimmune regulators
Tinghao WEN ; Yuandi LI ; Keke HE ; Wenqian SONG ; Xianbin WANG ; Jie GAO ; Min SU ; Rong HU
Chinese Journal of Tissue Engineering Research 2024;28(13):1996-2001
BACKGROUND:Autoimmune regulator gene(Aire)and Wnt signaling pathway play an important role in the maintenance and differentiation of mouse embryonic stem cell pluripotency.However,whether the Wnt signal and Aire are involved in the differentiation of embryonic stem cells to thymic epithelial progenitor cells remains poorly understood. OBJECTIVE:To investigate the relationship of the Wnt signaling pathway and Aire with the differentiation of embryonic stem cells. METHODS:A two-step differentiation method was used to induce mouse embryonic stem cells to differentiate into endoderm and then into thymic epithelial progenitor cells.Mouse embryonic stem cells were infected with Aire shRNA lentivirus,and monoclonal stable strains were screened by puromycin.Mouse embryonic stem cells were collected on days 0,3 and 10 of the directed induction of differentiation after the induced differentiation by the two-step differentiation method.Cellular immunofluorescence,flow cytometry,western blot assay,and real-time qPCR were used to detect the expression changes of related genes and proteins. RESULTS AND CONCLUSION:(1)Immunofluorescence staining showed positive expression of SSEA1 and OCT4 on day 0 of targeted induction of differentiation.(2)Immunofluorescence staining showed double-positive expression of SOX17 and FOXA2 on day 3 of targeted induction of differentiation.(3)Flow cytometry results showed positive expression of EPCAM1,K5 and K8 on day 10 of targeted induction of differentiation.(4)Compared with undifferentiated mouse embryonic stem cells,the expressions of Wnt7a,β-catenin,and Gsk-3β proteins were elevated,and the expression level of Aire protein was decreased in induced differentiated thymic epithelial progenitor cells.(5)Compared with undifferentiated mouse embryonic stem cells,the expressions of Wnt7a,β-catenin,Gsk-3β and Aire mRNA were elevated in thymic epithelial progenitor cells.(6)Compared with normal cultured mouse embryonic stem cells and their ultimately differentiated thymic epithelial progenitor cells,the expression levels of Wnt7a,β-catenin and Gsk-3β proteins were reduced in mouse embryonic stem cells with knockdown of Aire genes and their final differentiated thymic epithelial progenitor cells.In conclusion,the Wnt signaling pathway and Aire are jointly involved in the process of targeted induction of differentiation of mouse embryonic stem cells into mouse thymic epithelial progenitor cells.
6.Effect of Pax6 gene expression on hydrogen peroxide-induced aging in bone marrow mesenchymal stem cells
Jie GAO ; Xingxing ZOU ; Banghong WEN ; Yuandi LI ; Min SU ; Rong HU
Chinese Journal of Tissue Engineering Research 2024;28(31):4921-4925
BACKGROUND:The occurrence and development of various ophthalmic diseases are closely related to excessive oxidative stress,and the inhibition of oxidative stress response may produce preventive and therapeutic effects. OBJECTIVE:To explore the role of Pax6 gene expression on hydrogen peroxide-induced aging of mouse bone marrow mesenchymal stem cells(BM-MSCs). METHODS:Resuscitated BM-MSCs,Pax6/BM-MSCs,and shPax6/BM-MSCs were treated with hydrogen peroxide for 24 hours,and then β-galactosidase staining was performed.The proliferation index Ki67 expression and apoptosis were detected by flow cytometry.The expression of senescence-associated molecules(Wnt7a,p21,and p53)was detected by RT-PCR. RESULTS AND CONCLUSION:(1)After hydrogen peroxide treatment,the cells of the three groups showed senescence phenotype and β-galactosidase staining was positive.Compared with BM-MSCs group,the expression of positive cells in Pax6/BM-MSCs group was less and that in the shPax6/BM-MSCs group was more,and the difference was statistically significant(P<0.05).(2)The results of flow cytometry showed that compared with BM-MSCs group,the positive expression of Ki67 in the Pax6/BM-MSCs group increased and the level of apoptosis decreased,while the positive expression of Ki67 decreased and the level of apoptosis increased in the shPax6/BM-MSCs group;the difference was significantly different(P<0.05).(3)RT-PCR showed that compared with the BM-MSCs group,the expression of Wnt7a,p53,and p21 decreased in the Pax6/BM-MSCs group,while the expression of Wnt7a,p53,and p21 increased in the shPax6/BM-MSCs group;the difference was significantly different(P<0.05).(4)These findings indicate that overexpression of Pax6 can antagonize the aging progression of BM-MSCs induced by hydrogen peroxide,which may be related to Wnt signaling pathway.
7.Epidemiological Surveillance:Genetic Diversity of Rotavirus Group A in the Pearl River Delta,Guangdong,China in 2019
Ying Jie JIANG ; Dan LIANG ; Li WANG ; Yun XIAO ; Feng Yu LIANG ; Xia Bi KE ; Juan SU ; Hong XIAO ; Tao WANG ; Min ZOU ; Jian Hong LI ; Wen Chang KE
Biomedical and Environmental Sciences 2024;37(3):278-293
Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China. Methods This study included individuals aged 28 days-85 years.A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens,including RVA,using a Gastrointestinal Pathogen Panel,followed by genotyping,virus isolation,and complete sequencing to assess the genetic diversity of RVA. Results The overall RVA infection rate was 14.59%(103/706),with an irregular epidemiological pattern.The proportion of co-infection with RVA and other pathogens was 39.81%(41/103).Acute gastroenteritis is highly prevalent in young children aged 0-1 year,and RVA is the key pathogen circulating in patients 6-10 months of age with diarrhea.G9P[8](58.25%,60/103)was found to be the predominant genotype in the RVA strains,and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis.Recombination analysis showed that gene reassortment events,selection pressure,codon usage bias,gene polymorphism,and post-translational modifications(PTMs)occurred in the G9P[8]and G3P[8]strains. Conclusion This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China,further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity.Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.
8.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
9.Expert consensus on perioperative basic prevention for lower extremity deep venous thrombosis in elderly patients with hip fracture (version 2024)
Yun HAN ; Feifei JIA ; Qing LU ; Xingling XIAO ; Hua LIN ; Ying YING ; Junqin DING ; Min GUI ; Xiaojing SU ; Yaping CHEN ; Ping ZHANG ; Yun XU ; Tianwen HUANG ; Jiali CHEN ; Yi WANG ; Luo FAN ; Fanghui DONG ; Wenjuan ZHOU ; Wanxia LUO ; Xiaoyan XU ; Chunhua DENG ; Xiaohua CHEN ; Yuliu ZHENG ; Dekun YI ; Lin ZHANG ; Hanli PAN ; Jie CHEN ; Kaipeng ZHUANG ; Yang ZHOU ; Sui WENJIE ; Ning NING ; Songmei WU ; Jinli GUO ; Sanlian HU ; Lunlan LI ; Xiangyan KONG ; Hui YU ; Yifei ZHU ; Xifen YU ; Chen CHEN ; Shuixia LI ; Yuan GAO ; Xiuting LI ; Leling FENG
Chinese Journal of Trauma 2024;40(9):769-780
Hip fracture in the elderly is characterized by high incidence, high disability rate, and high mortality and has been recognized as a public health issue threatening their health. Surgery is the preferred choice for the treatment of elderly patients with hip fracture. However, lower extremity deep venous thrombosis (DVT) has an extremely high incidence rate during the perioperative period, and may significantly increase the risk of patients′ death once it progresses to pulmonary embolism. In response to this issue, the clinical guidelines and expert consensuses all emphasize active application of comprehensive preventive measures, including basic prevention, physical prevention, and pharmacological prevention. In this prevention system, basic prevention is the basis of physical and pharmacological prevention. However,there is a lack of unified and definite recommendations for basic preventive measures in clinical practice. To this end, the Orthopedic Nursing Professional Committee of the Chinese Nursing Association and Nursing Department of the Orthopedic Branch of the China International Exchange and Promotive Association for Medical and Health Care organized relevant nursing experts to formulate Expert consensus on perioperative basic prevention for lower extremity deep venous thrombosis in elderly patients with hip fracture ( version 2024) . A total of 10 recommendations were proposed, aiming to standardize the basic preventive measures for lower extremity DVT in elderly patients with hip fractures during the perioperative period and promote their subsequent rehabilitation.
10.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.

Result Analysis
Print
Save
E-mail