1.Connotation and Prevention Strategies of Traditional Chinese Medicine for Panvascular Diseases
Jie WANG ; Jun LI ; Yan DONG ; Cong CHEN ; Yongmei LIU ; Chao LIU ; Lanchun LIU ; Xuan SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):1-14
		                        		
		                        			
		                        			Panvascular disease, with vascular diseases as the common pathological feature, is mainly manifested as atherosclerosis. Panvascular disease mainly affects the important organs of the heart, brain, kidney, and limbs. It is one of the leading causes of death for Chinese residents at present. Previously, due to the narrow branches of disciplines, too much attention was paid to local lesions, resulting in the neglect of panvascular disease as a systemic one. The fact that panvascular disease has overall pathology and comprehensive and individualized treatment strategies, makes the disease highly compatible with the principles of holism concept and syndrome differentiation and treatment in traditional Chinese medicine (TCM). It is believed that blood stasis is the core pathogenesis of atherosclerosis and is involved in the whole process of atherosclerosis. The theories of ''blood vessel'', ''meridians'', ''visceral manifestation'', and ''organs-meridians'' in TCM are helpful to comprehensively understand the complexity of panvascular diseases. Moreover, those theories can provide systematic treatment strategies. The TCM syndromes of panvascular diseases evolve from ''phlegm, stasis, stagnation, and deficiency''. Panvascular arteriosclerosis is related to the syndrome of ''stasis and phlegm'', and the treatment mainly promotes blood circulation and removes phlegm. There are different specific drugs and mechanisms of action for coronary atherosclerosis, cerebral atherosclerosis, and renal artery atherosclerotic stenosis. Panvascular venous lesions are related to the syndrome of ''deficiency and stasis'' in TCM, and the TCM treatment mainly invigorates Qi and promotes blood circulation, which can inhibit venous thrombosis, improve venous ulcers, and resist venous endothelial damage. Panvascular microcirculatory lesions are inseparable from the ''stagnation and stasis'' in TCM, and the treatment mainly promotes Qi and dredges collaterals, which has a good effect on coronary microvascular lesions, diabetic microvascular lesions, pulmonary microvascular lesions, and pancreatic microvascular lesions. Panvascular lymphatic lesions are related to the syndrome of ''water and stasis'' in TCM. The treatment method focuses on promoting blood circulation and water excretion, which can promote lymphangiogenesis and enhance lymphatic reflux. In addition, the combination of TCM and modern technology, especially the application of artificial intelligence, can improve the efficiency of early identification and personalized treatment, resulting in early screening and comprehensive management of panvascular diseases. Therefore, TCM will play a vital role in the prevention and treatment of panvascular diseases. 
		                        		
		                        		
		                        		
		                        	
2.Connotation and Prevention Strategies of Traditional Chinese Medicine for Panvascular Diseases
Jie WANG ; Jun LI ; Yan DONG ; Cong CHEN ; Yongmei LIU ; Chao LIU ; Lanchun LIU ; Xuan SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):1-14
		                        		
		                        			
		                        			Panvascular disease, with vascular diseases as the common pathological feature, is mainly manifested as atherosclerosis. Panvascular disease mainly affects the important organs of the heart, brain, kidney, and limbs. It is one of the leading causes of death for Chinese residents at present. Previously, due to the narrow branches of disciplines, too much attention was paid to local lesions, resulting in the neglect of panvascular disease as a systemic one. The fact that panvascular disease has overall pathology and comprehensive and individualized treatment strategies, makes the disease highly compatible with the principles of holism concept and syndrome differentiation and treatment in traditional Chinese medicine (TCM). It is believed that blood stasis is the core pathogenesis of atherosclerosis and is involved in the whole process of atherosclerosis. The theories of ''blood vessel'', ''meridians'', ''visceral manifestation'', and ''organs-meridians'' in TCM are helpful to comprehensively understand the complexity of panvascular diseases. Moreover, those theories can provide systematic treatment strategies. The TCM syndromes of panvascular diseases evolve from ''phlegm, stasis, stagnation, and deficiency''. Panvascular arteriosclerosis is related to the syndrome of ''stasis and phlegm'', and the treatment mainly promotes blood circulation and removes phlegm. There are different specific drugs and mechanisms of action for coronary atherosclerosis, cerebral atherosclerosis, and renal artery atherosclerotic stenosis. Panvascular venous lesions are related to the syndrome of ''deficiency and stasis'' in TCM, and the TCM treatment mainly invigorates Qi and promotes blood circulation, which can inhibit venous thrombosis, improve venous ulcers, and resist venous endothelial damage. Panvascular microcirculatory lesions are inseparable from the ''stagnation and stasis'' in TCM, and the treatment mainly promotes Qi and dredges collaterals, which has a good effect on coronary microvascular lesions, diabetic microvascular lesions, pulmonary microvascular lesions, and pancreatic microvascular lesions. Panvascular lymphatic lesions are related to the syndrome of ''water and stasis'' in TCM. The treatment method focuses on promoting blood circulation and water excretion, which can promote lymphangiogenesis and enhance lymphatic reflux. In addition, the combination of TCM and modern technology, especially the application of artificial intelligence, can improve the efficiency of early identification and personalized treatment, resulting in early screening and comprehensive management of panvascular diseases. Therefore, TCM will play a vital role in the prevention and treatment of panvascular diseases. 
		                        		
		                        		
		                        		
		                        	
3.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
		                        		
		                        			
		                        			Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field. 
		                        		
		                        		
		                        		
		                        	
4.Circular RNA hsa_circUCK2 involved in regulation of pulmonary fibrosis induced by silicon dioxide
Cong ZHANG ; Wei LUO ; Sha WANG ; Jie CHAO
Journal of Environmental and Occupational Medicine 2024;41(4):362-366
		                        		
		                        			
		                        			Background Pulmonary fibrosis currently lacks screening and diagnostic methods in the early stages and effective treatments in the later stages, so there is an urgent need to explore the mechanisms and develop targeted treatments. Objective To screen the expression of differentially expressed circular RNA (circRNA) hsa_circUCK2 under pathological conditions and to explore its effect on pulmonary fibrosis. Methods In the cell-based experiments, hsa_circUCK2 was knocked down in HPF-a cells using small interfering RNA (siRNA), and HPF-a cells were stimulated by TGF-β1. Four groups were set up: si-NC group, si-circUCK2 group, si-NC+TGF-β1-treated group, and si-circUCK2+TGF-β1-treated group. Western blot assay was used to detect the expression of fibronectin (FN1) in HPF-a cells of the four groups, scratch assay was used to detect the migration ability of HPF-a cells, and CCK-8 assay was used to detect the proliferation ability of HPF-a cells in the two groups with TGF-β1 stimulation, the si-NC+TGF-β1-treated group and the si-circUCK2+TGF-β1-treated group. In the animal experiments, forty-eighty healthy SPF-grade male C57BL/6 mice were randomly divided into four groups: saline+si-con group, saline+si-circ_0000115 group, SiO2+si-con group, and SiO2+si-circ_0000115 group. Mouse lung circRNA mmu_circ_0000115 (mouse homolog of hsa_circUCK2) was knocked down by tracheal drip injection of siRNA, and a mouse lung fibrosis model was constructed by tracheal drip injection of SiO2 suspension (0.2 g·kg−1, 50 mg·mL−1) after 48 h. Real-time fluorescence quantitative PCR was used to detect the knockout efficiency in each organ of the mouse, Western blot was applied to detect the expression of type I collagen α2 (COL1A2) in the lung tissues, and Sirius red was used to detect collagen synthesis in the lung tissues. Results In the cell-based experiments, after the knockdown of hsa_circUCK2, the Western blot results showed that the expression level of the FN1 protein in TGF-β1-stimulated HPF-a cells was significantly down-regulated (P <0.05); the CCK-8 assay and cell scratch assay showed that the down-regulation of hsa_circUCK2 gene significantly inhibited the proliferation and migration of HPF-a cells (P<0.01). In the animal experiments, the real-time fluorescence quantitative PCR results showed that among the detected organs, mmu_circ_0000115 was significantly knocked down only in the lung tissues (P<0.0001); the Western blot results showed that knocking down mmu_circ_0000115 significantly reduced the COL1A2 protein expression level when compared with the SiO2+si-con group (P<0.0001); the Sirius red results showed that knocking down mmu_circ_0000115 significantly reduced collagen production and deposition in lung tissues of mice in the model group. Conclusion Knockdown of hsa_circUCK2 inhibits fibroblast activation and reduces collagen deposition in lung fibrosis model mice. It is suggested that the hsa_circUCK2 is involved in the process of pulmonary fibrosis and may be a potential therapeutic target for pulmonary fibrosis.
		                        		
		                        		
		                        		
		                        	
5.Targeting CDT1 inhibit tumor growth and its mechanism in lung adenocarcinoma
Yuan MI ; Yuxiang LIANG ; Cong WANG ; Desi LI ; Chuntao SONG ; Jie SU ; Qingcai ZHANG ; Lei WANG
Acta Universitatis Medicinalis Anhui 2024;59(2):260-266
		                        		
		                        			
		                        			Objective To explore the clinical significance and mechanisms of chromatin licensing and DNA repli-cation factor 1(CDT1)in lung adenocarcinoma).Methods The gene expression samples of lung adenocarcinoma tissue and normal lung tissue were downloaded from the TCGA database,and perform differential analysis,GO a-nalysis,independent prognosis analysis,and correlation analysis with immunotherapy using R language.CDT1 ex-pression in lung adenocarcinoma and normal tissues was detected by PCR in clinical samples.The changes of cell proliferation and cycle in si-CDT1 knockdown group and si-NC control group were detected by flow cytometry.The invasive ability of each group was detected by Transwell.The expressions of CDT1,TPX2 and p53 in each group were detected by Western blot.Results The TCGA data analysis revealed CDT1 as a differentially expressed gene.GO analysis indicated that CDT1 was closely associated with the cell cycle.The high expression of CDT1 in lung adenocarcinoma tissues was validated in clinical samples.CDT1 could serve as an independent factor for predicting the prognosis of lung adenocarcinoma and had predictive value for immunotherapy in lung adenocarcinoma.Knock-down of CDT1 resulted in a significant decrease in cell proliferation ability compared to the control group,and cells were noticeably arrested in the G1 phase.Transwell assay results demonstrated a significant reduction in invasive capacity in the CDT1 knockdown group.Knockdown of CDT1 led to a significant decrease in TPX2 expression and a significant increase in p53 expression,while overexpression of CDT1 yielded the opposite effect.Conclusion Re-sults demonstrate the elevated expression of CDT1 in lung adenocarcinoma,its association with prognostic signifi-cance,and its impact on lung adenocarcinoma's occurrence and development by influencing TPX2 and p53.
		                        		
		                        		
		                        		
		                        	
6.Association between prolactin/testosterone ratio and breast cancer in Chinese women.
Qian CAI ; Xiaohan TIAN ; Yuyi TANG ; Han CONG ; Jie LIU ; Song ZHAO ; Rong MA ; Jianli WANG ; Jiang ZHU
Chinese Medical Journal 2024;137(3):368-370
7.Efficacy and safety of recombinant human anti-SARS-CoV-2 monoclonal antibody injection(F61 injection)in the treatment of patients with COVID-19 combined with renal damage:a randomized controlled exploratory clinical study
Ding-Hua CHEN ; Chao-Fan LI ; Yue NIU ; Li ZHANG ; Yong WANG ; Zhe FENG ; Han-Yu ZHU ; Jian-Hui ZHOU ; Zhe-Yi DONG ; Shu-Wei DUAN ; Hong WANG ; Meng-Jie HUANG ; Yuan-Da WANG ; Shuo-Yuan CONG ; Sai PAN ; Jing ZHOU ; Xue-Feng SUN ; Guang-Yan CAI ; Ping LI ; Xiang-Mei CHEN
Chinese Journal of Infection Control 2024;23(3):257-264
		                        		
		                        			
		                        			Objective To explore the efficacy and safety of recombinant human anti-severe acute respiratory syn-drome coronavirus 2(anti-SARS-CoV-2)monoclonal antibody injection(F61 injection)in the treatment of patients with coronavirus disease 2019(COVID-19)combined with renal damage.Methods Patients with COVID-19 and renal damage who visited the PLA General Hospital from January to February 2023 were selected.Subjects were randomly divided into two groups.Control group was treated with conventional anti-COVID-19 therapy,while trial group was treated with conventional anti-COVID-19 therapy combined with F61 injection.A 15-day follow-up was conducted after drug administration.Clinical symptoms,laboratory tests,electrocardiogram,and chest CT of pa-tients were performed to analyze the efficacy and safety of F61 injection.Results Twelve subjects(7 in trial group and 5 in control group)were included in study.Neither group had any clinical progression or death cases.The ave-rage time for negative conversion of nucleic acid of SARS-CoV-2 in control group and trial group were 3.2 days and 1.57 days(P=0.046),respectively.The scores of COVID-19 related target symptom in the trial group on the 3rd and 5th day after medication were both lower than those of the control group(both P<0.05).According to the clinical staging and World Health Organization 10-point graded disease progression scale,both groups of subjects improved but didn't show statistical differences(P>0.05).For safety,trial group didn't present any infusion-re-lated adverse event.Subjects in both groups demonstrated varying degrees of elevated blood glucose,elevated urine glucose,elevated urobilinogen,positive urine casts,and cardiac arrhythmia,but the differences were not statistica-lly significant(all P>0.05).Conclusion F61 injection has initially demonstrated safety and clinical benefit in trea-ting patients with COVID-19 combined with renal damage.As the domestically produced drug,it has good clinical accessibility and may provide more options for clinical practice.
		                        		
		                        		
		                        		
		                        	
		                				8.Construction and characterization of lpxC  deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii 
		                			
		                			Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
		                        		
		                        			
		                        			 Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,
		                        		
		                        	
9.Quercetin alleviates podocyte injury by inhibiting inflammation and pyroptosis through SIRT1/STAT3/GSDME
Jie-Qiong WANG ; Ge LI ; Shao-Hua WANG ; Yu WAN ; Yun LIU ; Cong-Gai HUANG ; Qu-Lian GUO ; Fang-Fang ZHONG
Chinese Pharmacological Bulletin 2024;40(7):1279-1287
		                        		
		                        			
		                        			Aim To investigate the effect of quercetin(Que)on podocyte inflammatory injury and the under-lying mechanism.Methods MPC5 cells were divided into normal glucose group(NG),mannitol group(MA),high glucose group(HG)and high glucose+quercetin group(HG+Que).Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry.The expression of SIRT1,STAT3,apoptosis-related proteins(Bax,Bcl-2,caspase-3)and pyroptosis pro-tein GSDME was detected by Western blot.The ex-pression levels of inflammatory factors(IL-6,TNF-α,IL-18,IL-1β)in cell supernatants were detected by ELISA.Then small interfering RNA technology was used to knockdown SIRT1 expression.To further eval-uate the biological significance of SIRT1 in response to high glucose and Que treatment,negative control group(HG+si-NC+Que)and SIRT1 interference group(HG+si-SIRT1+Que)were added in the presence of high glucose and Que.Results Compared with the high glucose group,40 μmol·L-1 Que could alleviate the apoptosis of MPC5 cells induced by high glucose,decrease the expression of apoptosis related protein Bax and caspase-3,as well as increase the expression of anti-apoptotic protein Bcl-2;ELISA results showed that Que could decrease the expression of TNF-α,IL-6,IL-1 β and IL-18 induced by high glucose.Mechanical-ly,Que could alleviate the inhibitory effect of high glu-cose on the expression of SIRT1,and further decrease the activation of STAT3 and N-GSDME,and inhibit pyroptosis.Compared with the si-NC group,si-SIRT1 group could reverse the protective effect of Que on the high glucose induced inflammatory damage of podo-cytes,the expression of apoptotic proteins Bax and caspase-3 increased,while the expression of anti-apop-totic protein Bcl-2 decreased.At the same time,the levels of inflammatory cytokines TNF-α,IL-6,IL-1 βand IL-18 in supernatants increased,and the expres-sion of STAT3 and N-GSDME increased.Conclusion Que could inhibit pyroptosis and relieve the inflam-matory damage of podocytes through SIRT1/STAT3/GSDME pathway.
		                        		
		                        		
		                        		
		                        	
10.Roles of THEM4 in the Akt pathway:a double-edged sword
XIE WEN ; LIU WEIDONG ; WANG LEI ; ZHU BIN ; ZHAO CONG ; LIAO ZILING ; LI YIHAN ; JIANG XINGJUN ; LIU JIE ; REN CAIPING
Journal of Zhejiang University. Science. B 2024;25(7):541-556
		                        		
		                        			
		                        			The protein kinase B(Akt)pathway can regulate the growth,proliferation,and metabolism of tumor cells and stem cells through the activation of multiple downstream target genes,thus affecting the development and treatment of a range of diseases.Thioesterase superfamily member 4(THEM4),a member of the thioesterase superfamily,is one of the Akt kinase-binding proteins.Some studies on the mechanism of cancers and other diseases have shown that THEM4 binds to Akt to regulate its phosphorylation.Initially,THEM4 was considered an endogenous inhibitor of Akt,which can inhibit the phosphorylation of Akt in diseases such as lung cancer,pancreatic cancer,and liver cancer,but subsequently,THEM4 was shown to promote the proliferation of tumor cells by positively regulating Akt activity in breast cancer and nasopharyngeal carcinoma,which contradicts previous findings.Considering these two distinct views,this review summarizes the important roles of THEM4 in the Akt pathway,focusing on THEM4 as an Akt-binding protein and its regulatory relationship with Akt phosphorylation in various diseases,especially cancer.This work provides a better understanding of the roles of THEM4 combined with Akt in the treatment of diseases.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail