1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Discussion on the Pathogenesis of Osteonecrosis of the Femoral Head Under the System of Non-uniform Settlement During Bone Resorption and Multidimensional Composite Bowstring Working in Coordination with the Theory of Liver-Kidney and Muscle-Bone Based on the Concept of Liver and Kidney Sharing the Common Source
Gui-Xin ZHANG ; Feng YANG ; Le ZHANG ; Jie LIU ; Zhi-Jian CHEN ; Lei PENG ; En-Long FU ; Shu-Hua LIU ; Chang-De WANG ; Chun-Zhu GONG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):239-246
From the perspective of the physiological basis of liver and kidney sharing the common source in traditional Chinese medicine(TCM),and by integrating the theory of kidney dominating bone,liver dominating tendon,and meridian sinew of TCM as well as the bone resorption and collapse theory,and non-uniform settlement theory and lower-limb musculoskeletal bowstring structure theory of modern orthopedics,the pathogenesis of osteonecrosis of the femoral head(ONFH)under the system of non-uniform settlement during bone resorption and multidimensional composite bowstring working in coordination with the theory of liver-kidney and muscle-bone was explored.The key to the TCM pathogenesis of ONFH lies in the deficiency of the liver and kidney,and then the imbalance of kidney yin-yang leads to the disruption of the dynamic balance of bone formation and bone resorption mediated by osteoblasts-osteoclasts,which manifests as the elevated level of bone metabolism and the enhancement of focal bone resorption in the femoral head,and then leads to the necrosis and collapse of the femoral head.It is considered that the kidney dominates bone,liver dominates tendon,and the tendon and bone together constitute the muscle-bone-joint dynamic and static system of the hip joint.The appearance of collapse destroys the originally balanced muscle-bone-joint system.Moreover,the failure of liver blood in the nourishment of muscles and tendons further exacerbates the imbalance of the soft tissues around the hip joint,accelerates the collapse of the muscle-bone-joint dynamic and static system,speeds up the process of femoral head collapse,and ultimately results in irreversible outcomes.Based on the above pathogenesis,the systematic integrative treatment of ONFH should be based on the TCM holistic concept,focuses on the focal improvement of internal and external blood circulation of the femoral head by various approaches,so as to rebuild the coordination of joint function.Moreover,attention should be paid to the physical constitution of the patients,and therapy of tonifying the kidney and regulating the liver can be used to restore the balance between osteogenesis and osteoblastogenesis,and to reconstruct the muscle-bone-joint system,so as to effectively delay or even prevent the occurrence of ONFH.
3.Endo-beta-N-acetylglucosaminidase: Possible Functions and Mechanisms
Xin-Rong LU ; Yong-Liang TONG ; Wei-Li KONG ; Lin ZOU ; Dan-Feng SHEN ; Shao-Xian LÜ ; Rui-Jie LIU ; Shao-Xing ZHANG ; Yu-Xin ZHANG ; Lin-Lin HOU ; Gui-Qin SUN ; Li CHEN
Progress in Biochemistry and Biophysics 2024;51(5):985-999
Endo-beta-N-acetylglucosaminidase (ENGase) is widely distributed in various organisms. The first reported ENGase activity was detected in Diplococcus pneumoniae in 1971. The protein (Endo D) was purified and its peptide sequence was determined in 1974. Three ENGases (Endo F1-F3) were discovered in Flavobacterium meningosepticum from 1982 to 1993. After that, the activity was detected from different species of bacteria, yeast, fungal, plant, mice, human, etc. Multiple ENGases were detected in some species, such as Arabidopsis thaliana and Trichoderma atroviride. The first preliminary crystallographic analysis of ENGase was conducted in 1994. But to date, only a few ENGases structures have been obtained, and the structure of human ENGase is still missing. The currently identified ENGases were distributed in the GH18 or GH85 families in Carbohydrate-Active enZyme (CAZy) database. GH18 ENGase only has hydrolytic activity, but GH85 ENGase has both hydrolytic and transglycosylation activity. Although ENGases of the two families have similar (β/α)8-TIM barrel structures, the active sites are slightly different. ENGase is an effective tool for glycan detection andglycan editing. Biochemically, ENGase can specifically hydrolyze β‑1,4 glycosidic bond between the twoN-acetylglucosamines (GlcNAc) on core pentasaccharide presented on glycopeptides and/or glycoproteins. Different ENGases may have different substrate specificity. The hydrolysis products are oligosaccharide chains and a GlcNAc or glycopeptides or glycoproteins with a GlcNAc. Conditionally, it can use the two products to produce a new glycopeptides or glycoprotein. Although ENGase is a common presentation in cell, its biological function remains unclear. Accumulated evidences demonstrated that ENGase is a none essential gene for living and a key regulator for differentiation. No ENGase gene was detected in the genomes of Saccharomyces cerevisiae and three other yeast species. Its expression was extremely low in lung. As glycoproteins are not produced by prokaryotic cells, a role for nutrition and/or microbial-host interaction was predicted for bacterium produced enzymes. In the embryonic lethality phenotype of the Ngly1-deficient mice can be partially rescued by Engase knockout, suggesting down regulation of Engase might be a solution for stress induced adaptation. Potential impacts of ENGase regulation on health and disease were presented. Rabeprazole, a drug used for stomach pain as a proton inhibitor, was identified as an inhibitor for ENGase. ENGases have been applied in vitro to produce antibodies with a designated glycan. The two step reactions were achieved by a pair of ENGase dominated for hydrolysis of substrate glycoprotein and synthesis of new glycoprotein with a free glycan of designed structure, respectively. In addition, ENGase was also been used in cell surface glycan editing. New application scenarios and new detection methods for glycobiological engineering are quickly opened up by the two functions of ENGase, especially in antibody remodeling and antibody drug conjugates. The discovery, distribution, structure property, enzymatic characteristics and recent researches in topical model organisms of ENGase were reviewed in this paper. Possible biological functions and mechanisms of ENGase, including differentiation, digestion of glycoproteins for nutrition and stress responding were hypothesised. In addition, the role of ENGase in glycan editing and synthetic biology was discussed. We hope this paper may provide insights for ENGase research and lay a solid foundation for applied and translational glycomics.
4.Allergy Associated With N-glycans on Glycoprotein Allergens
Yu-Xin ZHANG ; Rui-Jie LIU ; Shao-Xing ZHANG ; Shu-Ying YUAN ; Yan-Wen CHEN ; Yi-Lin YE ; Qian-Ge LIN ; Xin-Rong LU ; Yong-Liang TONG ; Li CHEN ; Gui-Qin SUN
Progress in Biochemistry and Biophysics 2024;51(5):1023-1033
Protein as the allergens could lead to allergy. In addition, a widespread class of allergens were known as glycans of N-glycoprotein. N-glycoprotein contained oligosaccharide linked by covalent bonds with protein. Recently,studies implicated that allergy was associated with glycans of heterologous N-glycoprotein found in food, inhalants, insect toxins, etc. The N-glycan structure of N-glycoprotein allergen has exerted an influence on the binding between allergens and IgE, while the recognition and presentation of allergens by antigen-presenting cells (APCs) were also affected. Some researches showed thatN-glycan structure of allergen was remodeled by N-glycosidase, such as cFase I, gpcXylase, as binding of allergen and IgE partly decreased. Thus, allergic problems caused by N-glycoproteins could potentially be solved by modifying or altering the structure ofN-glycoprotein allergens, addressing the root of the issue. Mechanism of N-glycans associated allergy could also be elaborated through glycosylation enzymes, alterations of host glycosylation. This article hopes to provide a separate insight for glycoimmunology perspective, and an alternative strategy for clinical prevention or therapy of allergic diseases.
5.Determination concentration of methotrexate and its polyglutamates in human erythrocyte by high-performance liquid chromatographic fluorescence method
Gui-Jie ZHANG ; Ting LIAO ; Hong-Yu JIE ; Wen-Ying CHEN ; Qiang LI
The Chinese Journal of Clinical Pharmacology 2024;40(1):117-120
Objective To establish a sensitive,accurate and simple method for the determination of methotrexate and methotrexate polyglutamates(MTXPG2 and MTXPG3)in human erythrocytes.Methods A dual three element gradient liquid chromatograph with a fluorescence detector was used,the C18-WP column(20 mm ×4 mm,5μm)was used as the online SPE column,and the Athena C18-WP column(150 mm x4.6 mm,3 μm)was used as the analytical column.Erythrocyte lysate was precipitated with zinc sulphate-10%formic acid methanol(100:90,v/v),and postcolumn photo-oxidation of MTXPGs to fluorescent analytes using H2O2.The fluorescence excitation wavelength was 274 nm,the emission wavelength was 470 nm,the column temperature was 40 ℃,and the injection volume was 100 μL.The specificity,standard curve,lower limit of quantitation,precision,recovery and stability of the method were investigated.Results MTX,MTXPG2 and MTXPG3 had good linearity in the range of 12.5-400.0 nmol·L-1.The standard curve of MTX was y=763.8x-2 961.1(R2=0.999 5),and the extraction recovery rate was 60.7%-66.1%;the standard curve of MTXPG2 was y=1 017.8x-239.8(R2=0.998 4),and the extraction recovery rate was 67.2%-67.3%;the standard curve of MTXPG3 was y=1 069.1x-819.6(R2=0.999 4),the extraction recovery rate was 62.9%-70.1%.Intra-day precision RSD<8.8%,inter-day precision RSD<10.8%.Conclusion This method is accurate and reproducibility,and the online solid-phose extraction enrichment and separation of target compounds simplify the sample pretreatment steps,improve the analysis efficiency,and is suitable for detecting the concentration of MTX,MTXPG2 and MTXPG3 in erythrocytes of patients with rheumatoid arthritis.
6.Honey-processed Hedysari Radix in treatment of spleen-Qi deficiency rats based on metabonomics of the cecum contents
Yu-Jing SUN ; Qin-Jie SONG ; Yan-Jun WANG ; Tian-Tian BIAN ; Yu-Gui ZHANG ; Xian-Wei LI ; Guo-Feng LI ; Yue-Feng LI
The Chinese Journal of Clinical Pharmacology 2024;40(4):584-588
Objective To find potential biomarkers and analyzing metabolic pathways of the treatment by honey-processed Hedysari Radix,the cecal contents of rats with spleen-Qi deficiency were used as samples for analysis.Methods Sixty male SD rats were randomly divided into blank,model,experimental and control groups.The rats in other groups except the control group were carried out by using the three-factor compound modeling method of bitter-cold diarrhea,excessive exertion and hunger and satiety disorders.Experimental group was given 12.60 g·kg-1 honey-processed Hedysari Radix;control group was given 0.63 g·kg-1 lactobacillus bifidum triplex tabletsa;control and model groups received with equal volume of distilled water for a total of 15 days.Measure body weight,anal temperature,immune organ index of rats.Ultra-pressure liquid chromatography-quadrupole-exactive-mass spectrometry technology was used to measure the levels of endogenous metabolites in cecum contents.Orthogonal partial least squares discriminant analysis and database"Kyoto Encyclopedia of Genes and Genomes"were used to identify potential differential metabolites and possible metabolic pathways.Results After the intervention,the average body weight of the experimental,control,model and blank groups was(216.87±7.85),(210.96±9.03),(159.47±5.18)and(293.51±22.98)g;anal temperature was(36.14±0.48),(35.40±0.64),(34.50±0.78)and(36.61±0.34)℃;the thymus indexes were(1.19±0.20),(1.24±0.25),(0.47±0.15)and(1.31±0.21)mg·g-1;the spleen indexes were(1.95±0.33),(2.18±0.28),(1.61±0.27)and(2.29±0.24)mg·g-1.Compared with the model group,the above indexes of the experimental group and the control group were significantly increased(all P<0.01).A total of 14 potential biomarkers of Honey-processed Hedysari Radix in treating spleen-Qi deficiency syndrome were screened out in this study,which mainly involved amino acid metabolism such as tryptophan and glutamate,riboflavin metabolism and adenosine 5'-monophosphate-activated protein kinase metabolism.Conclusion Honey-processed Hedysari Radix can further protect the intestinal mucosal barrier and reduce the intestinal inflammatory response by improving the metabolic level of cecum contents in rats with spleen-Qi deficiency in cecum contents,thus exerting the effect of strengthening the spleen and tonifying the Qi.
7.Effects of radiation on pharmacokinetics
Jie ZONG ; Hai-Hui ZHANG ; Gui-Fang DOU ; Zhi-Yun MENG ; Ruo-Lan GU ; Zhuo-Na WU ; Xiao-Xia ZHU ; Xuan HU ; Hui GAN
The Chinese Journal of Clinical Pharmacology 2024;40(13):1996-2000
Radiation mainly comes from medical radiation,industrial radiation,nuclear waste and atmospheric ultraviolet radiation,etc.,radiation is divided into ionizing radiation and non-ionizing radiation.Studying the effects of ionizing and non-ionizing radiation on drug metabolism,understanding the absorption and distribution of drugs in the body after radiation and the speed of elimination under radiation conditions can provide reasonable guidance for clinical medication.This article reviews the effects of radiation on the pharmacokinetics of different drugs,elaborates the changes of different pharmacokinetics under radiation state,and discusses the reasons for the changes.
8.Study of honey-processed Hedysari Radix on the protection of intestinal mucosal barrier in rats with spleen deficiency
Mao-Mao WANG ; Qin-Jie SONG ; Zhe WANG ; Ding-Cai MA ; Yu-Gui ZHANG ; Ting LIU ; Zhuan-Hong ZHANG ; Fei-Yun GAO ; Yan-Jun WANG ; Yue-Feng LI
The Chinese Journal of Clinical Pharmacology 2024;40(15):2231-2235
Objective To explore the protective mechanism of honey-processed Hedysari Radix in regulating intestinal mucosal injury in rats with spleen qi deficiency.Methods The three-factor composite modeling method of bitter cold diarrhea,overwork and hunger and satiety disorder was used to construct a spleen qi deficiency model rats.After the model was successfully made,they were randomly divided into model group,honey-processed Hedysari Radix group and probiotic group,with 15 animals in each group.Another 15 normal rats were taken as the blank group.The honey-processed Hedysari Radix group was given 12.6 g·kg-1 water decoction of honey-processed Hedysari Radix by gavage,the probiotics group was given Bifidobacterium Lactobacillus triple viable tablets suspension at a dose of 0.625 g·kg-1,and the blank group and the model group were given the same dose of distilled water.The rats in the four groups were administered once a day for 15 days.Enzyme-linked immunosorbent assay was used to detect diamine oxidase(DAO)in serum,D-lactic acid(D-LA),secretory immunoglobulin A factor,and Western blotting was used to detect the expression levels of AMP-activated protein kinase(AMPK),zonula occludens-1(ZO-1)and occludin in colon tissues.Results The serum levels of DAO in the blank group,model group,honey-processed Hedysari Radix group and probiotic group were(138.93±9.78),(187.95±12.90),(147.21±6.92)and(166.47±3.37)pg·mL-1;the contents of D-LA were(892.23±49.17),(1 099.84±137.64),(956.56±86.04)and(989.61±51.75)μg·L-1;the contents of SIgA in colon tissues were(14.04±1.42),(11.47±2.39),(11.84±1.49)and(12.93±1.65)μg·mL-1;the relative expression levels of ZO-1 protein in colon tissues were 1.18±0.11,0.42±0.04,0.77±0.05 and 0.95±0.07;the relative expression levels of occludin protein were 1.35±0.31,0.61±0.17,1.19±0.19 and 0.88±0.13;the relative expression levels of AMPK protein were 0.91±0.02,0.35±0.09,0.74±0.08 and 0.59±0.11.Compared with the model group,there were significant differences in the serum content of DAO and D-LA,SIgA content in colon,and the content of ZO-1,occludin and AMPK protein in the honey-processed Hedysari Radix group(P<0.01,P<0.05).Conclusion Honey-processed Hedysari Radix can enhance the protective effect on the intestinal mucosa of rats with spleen qi deficiency by regulating the expression of related inflammatory cytokines,intestinal mucosal upper cell enzymes and tight junction proteins in rats with spleen qi deficiency.
9.Clinical trial of parecoxib sodium combined with dexmedetomidine for surgery in patients with osteoporotic compression fractures
Kai LUO ; Qing WANG ; Gao-Ju WANG ; Jin YANG ; Guang-Zhou LI ; Shi-Jie SONG ; Shun-Gui CAI
The Chinese Journal of Clinical Pharmacology 2024;40(20):2963-2967
Objective To investigate the effects of parecoxib sodium injection combined with dexmedetomidine hydrochloride injection on postoperative cognitive function and stress response in patients with osteoporotic compression fractures.Methods The patients with osteoporotic compression fractures were divided into treatment group and control group according to the treatment plan.The control group was given intravenous injection of dexmedetomidine hydrochloride injection 0.2 μg·kg-1load dose,then micro pump injection 0.2 μg·kg-1·min-1 maintenance dose,until 30 min before the end of the operation;patients in the treatment group were intravenously injected with parecoxib sodium injection 20 mg before local anesthesia and 30 min before the end of operation on the basis of the control group.The pain,sedation,hemodynamics[mean arterial pressure(MAP),heart rate(HR)],cognitive function and safety evaluation were compared between the two groups before operation(T0),2 h after operation(T1),6 h after operation(T2),12 h after operation(T3)and 24 h after operation(T4).Results There were 39 cases in the treatment group and 41 cases in the control group.Visual analogue scale(VAS)scores in treatment group and control group were(3.09±0.55)and(3.41±0.62)scores at T1;VAS scores were(3.02±0.57)and(3.35±0.48)scores at T2;VAS scores were(2.64±0.44)and(2.90±0.46)scores at T3;VAS scores were(2.02±0.41)and(2.35±0.47)scores at T4;MMSE scores were(25.28±1.57)and(24.33±1.42)scores at T2;MMSE scores were(28.16±1.01)and(27.25±0.89)scores at T4;MoCA scores were(24.63±1.60)and(23.59±1.25)scores at T2;MoCA scores were(27.20±0.97)and(26.48±0.83)scores at T4.There were statistically significant differences in the above indexes between the treatment group and the control group(all P<0.05).Adverse drug reactions in the treatment group included bradycardia,hypotension,nausea vomiting and hypokalemia;adverse drug reactions in the control group included bradycardia,hypotension and nausea vomiting.The total incidence rates of adverse drug reactions were 12.82%and 9.76%,without statistically significant difference(P>0.05).Conclusion Compared with using dexmedetomidine alone,parecoxib sodium combined with dexmedetomidine is beneficial for relieving postoperative pain in patients with osteoporotic compression fractures,improving postoperative cognitive function.
10.Expression of miR-182-5p in patients with chronic heart failure and its correlation with left ventricular remodeling and prognosis
Xuelu TANG ; Lei GUI ; Jie ZHENG ; Xiuhua DI
Chinese Journal of Geriatric Heart Brain and Vessel Diseases 2024;26(2):132-136
Objective To investigate the serum expression level of miR-182-5p in patients with chronic heart failure(CHF),and analyze its correlation with left ventricular remodeling and prog-nosis.Methods A total of 138 CHF patients admitted to Liaocheng People's Hospital from Janu-ary 2019 to December 2021 were enrolled as CHF group,and another 120 healthy volunteers who took physical examinations at the same time served as the healthy group.The expression level of miR-182-5p in serum was detected in the two groups.Pearson analysis was used to analyze the correlation between its expression level and left ventricular remodeling.ROC curve was plotted to analyze the diagnostic value of miR-182-5p expression level.During 1 year of follow-up,their sur-vival status was collected and analyzed in the CHF patients.The prognostic value of miR-182-5p expression level was evaluated by Kaplan-Meier survival curve.Results The CHF patients had significantly lower LVEF value,but higher left ventricular remodeling index(LVRI)and miR-182-5p expression level than the healthy group(P<0.05,P<0.01).The expression level of miR-182-5p was negatively correlated with LVEF(r=-0.496,P=0.000)and positively with LVRI(r=0.460,P=0.000).The AUC value of miR-182-5p expression level in diagnosing CHF was 0.964,the cutoff value was 0.905,the sensitivity was 91.3%,and the specificity was 86.7%.Kaplan-Meier survival curve analysis showed that the high expression level of miR-182-5p could predict the overall survival of CHF patients(P=0.039).Conclusion The expression level of miR-182-5p is higher in CHF patients than healthy people,and the patients with higher level indi-cate more serious left ventricular remodeling.Detecting the expression level of miR-182-5p is help-ful for the diagnosis and poorgnosis prediction of CHF patients.

Result Analysis
Print
Save
E-mail