1.Mechanism of Ferroptosis in Cerebral Ischemia-reperfusion and Interventional Mechanism of Huoxue Huayu Jiedu Prescription Based on "Blood Stasis and Toxin" Pathogenesis
Jiayue HAN ; Danyi PAN ; Jiaxuan XIAO ; Yuchen LIU ; Jiyong LIU ; Yidi ZENG ; Jinxia LI ; Caixing ZHENG ; Hua LI ; Wanghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):51-60
ObjectiveTo explore the material basis of the "interaction of blood stasis and toxin" mechanism in cerebral ischemia-reperfusion injury, as well as the protective role of Huoxue Huayu Jiedu prescription (HXHYJDF) against ferroptosis. MethodsSixty SPF-grade male SD rats were randomly divided into six groups: sham group, model group, deferoxamine (DFO) group (100 mg·kg-1), low-dose HXHYJDF group (4.52 g·kg-1), medium-dose HXHYJDF group (9.04 g·kg-1), and high-dose HXHYJDF group (18.07 g·kg-1), with ten rats in each group. Except for the sham group, the other groups were used to replicate the model of focal cerebral ischemia-reperfusion in the middle cerebral artery of rats by the reforming Longa method. Neurological function was assessed at 1st, 3rd, 5th, and 7th days post-reperfusion using the modified neurological severity scores (m-NSS). Brain tissue pathology and the morphology of mitochondria were observed using hematoxylin-eosin (HE) staining and transmission electron microscopy. The contents of malondialdehyde (MDA), glutathione (GSH), divalent iron ions (Fe2+), and reactive oxygen species (ROS) in the ischemic cerebral tissue were detected using enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry and Western blot (WB) were used to detect the expression of iron death marker proteins glutathione peroxidase 4 (GPX4), ferroportin-1 (FPN1), transferrin receptor protein 1 (TfR1), and ferritin mitochondrial (FtMt) in brain tissue. ResultsCompared with the sham group, the mNSS score of the model group was significantly increased (P<0.01). HE staining showed that the number of neurons in the cortex of brain tissue was seriously reduced, and the intercellular space was widened. The nucleus was fragmented, and the cytoplasm was vacuolated. The results of transmission electron microscopy showed that the mitochondria in the cytoplasm contracted and rounded, and the mitochondrial cristae decreased. The matrix was lost and vacuolated, and the density of the mitochondrial bilayer membrane increased. The results of ELISA showed that the content of GSH decreased significantly (P<0.01), and the contents of MDA, Fe2+, and ROS increased significantly (P<0.01). The results of immunohistochemistry and WB showed that the expression of GPX4 and FPN1 proteins was significantly decreased (P<0.01), and the expression of FtMt and TfR1 proteins was significantly increased (P<0.01). Compared with those of the model group, the m-NSS scores of the high-dose and medium-dose HXHYJDF groups began to decrease on the 3rd and 5th days, respectively (P<0.05, P<0.01). The results of HE and transmission electron microscopy showed that the intervention of HXHYJDF improved the pathological changes of neurons and mitochondria. The results of ELISA showed that the content of GSH in the medium-dose and high-dose HXHYJDF groups increased significantly (P<0.01), and the contents of MDA, Fe2+, and ROS decreased significantly (P<0.05, P<0.01). The content of GSH in the low-dose HXHYJDF group increased significantly (P<0.01), and the contents of MDA and ROS decreased significantly (P<0.01). The results of immunohistochemistry showed that the expression of GPX4 and FPN1 in the high-dose HXHYJDF group increased significantly (P<0.01), and the expression of FtMt and TfR1 decreased significantly (P<0.01). The expression of GPX4 and FPN1 in the medium-dose HXHYJDF group increased significantly (P<0.05), and the expression of TfR1 decreased significantly (P<0.01). WB results showed that the expression levels of FPN1 and GPX4 proteins in the high-dose, medium-dose, and low-dose HXHYJDF groups were significantly up-regulated (P<0.01), and the expression levels of FtMt and TfR1 proteins were significantly down-regulated (P<0.01). ConclusionHXHYJDF can significantly improve neurological dysfunction symptoms in rats with cerebral ischemia-reperfusion injury, improve the pathological morphology of the infarcted brain tissue, and protect the brain tissue of rats with cerebral ischemia-reperfusion injury to a certain extent. Neuronal ferroptosis is involved in cerebral ischemia-reperfusion injury, with increased levels of MDA, Fe2+, ROS, and TfR1 and decreased levels of FtMt, FPN1, GPX4, and GSH potentially constituting the material basis of the interaction of blood stasis and toxin mechanism in cerebral ischemia-reperfusion injury. HXHYJDF may exert brain-protective effects by regulating iron metabolism-related proteins, promoting the discharge of free iron, reducing brain iron deposition, alleviating oxidative stress, and inhibiting ferroptosis.
2.A New Model for Diagnosis and Treatment of Growth and Development-related Diseases from the Perspective of the Integration of Exercise, Medicine, and Education
Jiaqi QIANG ; Yutong WANG ; Jiaxuan LIU ; Yingjing WANG ; Shi CHEN ; Hui PAN
Medical Journal of Peking Union Medical College Hospital 2025;16(3):537-544
Growth and development-related diseases result from the interplay of biological, psychological, and social factors. The collaboration between healthcare, sports, and education sectors integrates multidisciplinary resources and strengths to promote standardized diagnostic and therapeutic processes. This approach establishes a comprehensive closed-loop system encompassing early screening and referral, diagnosis and comprehensive evaluation, intervention and support plan formulation, as well as long-term management andoutcome assessment. It provides systematic scientific support for the healthy growth of children and adolescents, shifting disease intervention to the subclinical stage. Against the backdrop of societal informatization and intelligent development, this diagnostic and therapeutic model not only safeguards the holistic health of children and adolescents but also offers novel perspectives and feasible pathways for managing growth and development-related diseases. The implementation of this systematic diagnostic and therapeutic paradigm presents an innovative solution with Chinese characteristics for addressing such conditions, while injecting new vitality into the advancement of national health initiatives.
3.The Mediating Effect of Vitamin D on the Association Between Exercise and Triglyceride in Adolescents: A Prospective Cross-sectional Study
Bochuan HUANG ; Xiaoyuan GUO ; Yutong WANG ; Jiaxuan LIU ; Hui PAN ; Shi CHEN
Medical Journal of Peking Union Medical College Hospital 2025;16(3):584-590
To investigate the mediating role of vitamin D in the association between exerciseand triglyceride among adolescents, as well as its potential molecular mechanisms. This prospective cross-sectional study utilized convenience sampling, enrolling 2021-grade students from Jining No. 7 Middle School on June 5, 2023. Moderate-intensity exercise frequency was assessed via standardized questionnaires, serum 25-hydroxyvitamin D levels were measured using chemiluminescence, and triglyceride levels were determined via fully automated biochemical analysis. Spearman's rank correlation analysis was employed to examine the relationships among moderate-intensity exercise, triglyceride, and vitamin D. A mediation model was constructed using the Baron & Kenny causal steps approach, adjusting for confounders including age, sex, body mass index (BMI), dairy intake, sweet food consumption, and fast-food intake. Subgroup analyses were performed based on BMI. The significance of the mediation effect was confirmed using both the Bootstrap and Sobel tests. A total of 354 adolescents meeting the inclusion criteria were enrolled, including 142 females (40.11%) and 212 males (59.89%), with a median age of 13.25(12.83, 13.83)years. Spearman's analysis revealed a significant negative correlation between moderate-intensity exercise and triglyceride levels ( Vitamin D serves as a key mediator in the triglyceride-lowering effect of exercise among adolescents, independent of age, sex, and dietary habits. This mediation effect is particularly pronounced in adolescents with BMI < 24 kg/m2. The underlying mechanism may involve vitamin D-regulated lipid metabolism-related gene expression and suppression of inflammatory pathways, suggesting that targeting vitamin D signaling could be a potential molecular strategy for early intervention in adolescent dyslipidemia.
4.Association between negative life events and smartphone addiction among middle school students
Chinese Journal of School Health 2025;46(5):619-623
Objective:
To explore the association between negative life events and smartphone addiction among middle school students, so as to provide theoretical support and practical guidance for prevention and intervention of smartphone addiction among middle school students.
Methods:
Using cluster sampling, 8 890 students were selected to survey from 27 junior high schools and 3 senior high schools in a district of Shenzhen in 2022 (baseline) and 2023 (followup). Data were collected through selfresigned questionnaires on basic information, the Smartphone Addiction Scale-Short Version, and the Adolescent Selfrating Life Events Checklist. Mixedeffects models were employed to analyze the association.
Results:
Compared to 2022, the punishment scores of middle school students in 2023 [1.00 (0.00, 6.00) and 1.00 (0.00, 6.00)] decreased (Z=4.27), while the scores of interpersonal stress, learning stress and adaptation [4.00(0.00, 8.00), 4.00(0.00, 8.00); 4.00(1.00, 8.00), 5.00(2.00, 9.00); 2.00 (0.00, 6.00), 3.00 (0.00, 7.00)] increased (Z=-3.04, -8.36, -6.80) (P<0.01). Mixedeffects models revealed a positive doseresponse relationship between negative life events and smartphone addiction (OR=1.08-1.17, P<0.01). Stepwise regression showed independent positive effects of interpersonal stress (OR=1.05), academic stress (OR=1.03), and adaptation stress (OR=1.11) on smartphone addiction (P<0.01). Subgroup analysis of nonaddicted students in 2022 confirmed persistent associations for academic stress (OR=1.03) and adaptation (OR=1.07) (P<0.01).
Conclusion
Negative life events exhibit a positive doseresponse relationship with smartphone addiction, particularly interpersonal stress, academic stress, and adaptationrelated events.
5.Longitudinal association between only-child status and smartphone addiction in middle school students
Chinese Journal of School Health 2025;46(5):630-633
Objective:
To explore the longitudinal association between only-child status and smartphone addiction among middle school students, so as to provide a basis for establishing family intervention measures for smartphone addiction in middle school students.
Methods:
In October 2022 and October 2023, a preliminary survey and follow-up were conducted among 8 759 middle and high school students from 30 schools in a district of Shenzhen. A self-designed questionnaire was used to determine whether the students were the only-child, and the Chinese Version of the Smartphone Addiction Scale-Short Version (C-SAS-SV) was utilized to assess the students smartphone addiction status. A multilevel mixed-effects model and subgroup analysis were applied to examine the association between only-child status and smartphone addiction among middle school students.
Results:
During 2022 to 2023, the prevalence of smartphone addiction in the cohort of middle school students increased from 24.1% to 25.2%. Compared with only-child, non-only child were more likely to be addicted to smartphones (adjusted model: OR =1.2, 95% CI =1.1-1.4) and also scored higher on smartphone addiction (adjusted model: β =0.9, 95% CI =0.2-1.5)( P <0.05). Subgroup analysis further revealed that compared to baseline, non-only child demonstrated an increased prevalence of smartphone addiction (adjusted model: OR = 1.2 , 95% CI =1.0-1.5) and higher addiction scores (adjusted model: β =0.8, 95% CI =0.2-1.5) after one year( P <0.05).
Conclusions
Non-only child face higher risk of smartphone addiction. Under the current population policy, it is crucial to address smartphone addiction among middle school students who is not only child.
6.Design, synthesis and anticancer activity of superoxide anion-releasing beta-galactoside prodrugs
Jiaxuan LIU ; Xueyan YAO ; Yunying TAN ; Jing HU ; Junjie FU ; Jian YIN
Journal of China Pharmaceutical University 2025;56(3):295-304
Four novel β-galactoside prodrugs were designed and synthesized from anthraquinones HAQ-OH and AQ-OH in an attempt to use the prodrugs to selectively release superoxide anion (O2−) in cancer cells and to achieve selected anticancer activity by utilizing the Warburg effect and the elevated level of β-galactosidase in certain cancer cells. Cellular assays showed that the prodrugs Gal-HAQ and Gal-AQ selectively inhibited the proliferation and induced apoptosis of ovarian cancer OVCAR-3 cells overexpressing β-galactosidase. Using O2− fluorescent probe, it was found that in OVCAR-3 cells Gal-HAQ and Gal-AQ could time-dependently release O2−, which was essential for their anticancer activity. Furthermore, it was found that Gal-HAQ and Gal-AQ were effective senolytics toward senescent cells overexpressing β-galactosidase without affecting the viability of corresponding non-senescent cells, further confirming the β-galactosidase-dependent cytotoxicity of the prodrugs. In conclusion, Gal-HAQ and Gal-AQ, which release O2− in response to β-galactosidase, are expected to serve as candidate prodrugs targeting cancer cells.
7.Effects of Xiaozhong Zhitong Mixture (消肿止痛合剂) on Angiogenesis and the Dll4/Notch1 Signaling Pathway in Wound Tissue of Diabetic Foot Ulcer Model Rats
Xiao HAN ; Tao LIU ; Yuan SONG ; Jie CHEN ; Jiaxuan SHEN ; Jing QIAO ; Hengjie WANG ; Lewen WU ; Yazhou ZHAO
Journal of Traditional Chinese Medicine 2025;66(16):1695-1703
ObjectiveTo investigate the potential machanism of Xiaozhong Zhitong Mixture (消肿止痛合剂, XZM) in the treatment of diabetes foot ulcer (DFU). MethodsFifty SD rats were randomly divided into blank group, model group, XZM group, inhibitor group, XZM plus inhibitor group (combination group), with 10 rats in each group. Except for the blank group, rats were fed with high-sugar, high-fat, high-cholesterol diet, intraperitoneally injected with streptozotocin, and subjected to skin defect to establish DFU model. After successful modeling, the XZM group and the combination group were given 1 ml/(100 g·d)of XZM by gavage, while the blank group, model group, and inhibitor group were all given an equal volume of 0.9% sodium chloride injection by gavage. Thirty minutes later, the inhibitor group and the combination group were intraperitoneally injected with 5 mg/(kg·d) of Notch1 inhibitor DAPT. All groups were treated once a day. After 14 days of administration, the skin tissue from the dorsal foot of the blank group rats and wound tissue from the other groups were collected. The pathological changes of granulation tissue in the wound were detected using hematoxylin eosin (HE) staining. The microvascular density (MVD) in wounds was detected through immunohistochemical staining. Real time fluorescence quantitative polymerase chain reaction (RT-PCR) and western blotting were used to detect the mRNA and protein levels of Notch1 homolog (Notch1), Delta-like ligand 4 (Dll4), Delta-like ligand 4 (VEGF), and angiopoietin 2 (Ang-2), respectively. ResultsHistological results showed that the epidermal structure in the dorsal foot skin tissue of the rats in the blank group was intact. In the wound tissue of the model group, the epidermis exhibited excessive keratinization, vacuolar cytoplasm, and a large number of inflammatory cells infiltrating the tissue, while in the XZM group, a large amount of scab formation was observed in the epidermis, with no significant inflammatory cell infiltration and a noticeable increase in fibroblasts. In the combination group and the inhibitor group, partial epidermal scab formation was observed in the wound tissue with a small amount of inflammatory cell infiltration. Compared to those in the blank group, the MVD in the wound tissue increased in the model group, as well as the mRNA expression and protein levels of Notch1 and Dll4, while VEGFA and Ang-2 mRNA expression and protein levels significantly decreased (P<0.05 or P<0.01). Compared to those in the model group, the MVD in the wound tissue of all medication groups significantly increased, and the mRNA and protein levels of Notch1 and Dll4 decreased, while VEGFA and Ang-2 mRNA expression and protein levels increased (P<0.05 or P<0.01). Compared to the XZM group, the inhibitor group and the combination group showed decreased MVD in wound tissue, increased Notch1 and Dll4 mRNA and protein levels, and decreased expression of VEGFA and Ang-2 mRNA and proteins (P<0.05 or P<0.01). ConclusionXZM can effectively promote wound healing in DFU rats, and its mechanism of action may be related to the inhibition of Dll4/Notch1 signaling pathway in the wound tissue, therey promoting angiogenesis.
8.Advances of metabolomics in ocular diseases
Jiaxuan JIANG ; Junpeng LIU ; Junwen OUYANG ; Chengxiao ZHANG ; Kai HU
International Eye Science 2024;24(3):420-426
Ocular diseases pose a significant challenge to global health. The field of metabolomics, which involves the systematic identification and quantification of metabolites within a biological system, has emerged as a promising research approach for unraveling disease mechanisms and discovering novel biomarkers. Through its application, metabolomics has yielded valuable knowledge pertaining to the initiation and advancement of various ocular diseases. This review presents an overview of metabolomics and examines recent research progess in four ocular diseases, specifically diabetic retinopathy, age-related macular degeneration, glaucoma, and dry eye, summarizing potential biomarkers and metabolic pathways associated with these diseases. Additionally, this review offers insights into the future prospects of utilizing metabolomics for the management and treatment of ocular diseases.
9.Huaiqihuang Granules Affect Differentiation of Th17 Cells in IgA Vasculitis Nephritis Mice by Regulating AMPK/ACC Pathway
Xinglan YE ; Keying LI ; Jiaxuan LI ; Juan BAI ; Wencheng XU ; Hong LIU ; Xue XUE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):78-86
ObjectiveTo observe the intervention effect of Huaiqihuang granules (HQH) on immunoglobulin A vasculitis nephritis (IgAVN) mice and explore the underlying therapeutic mechanism. MethodFifty SPF-grade male Kunming mice were randomly divided into a normal group, an IgAVN model group, a dexamethasone group (2.5 mg·kg-1·d-1), a low-dose HQH group (4 g·kg-1·d-1), and a high-dose HQH group (8 g·kg-1·d-1). The mouse model was established using oral administration of gliadin combined with intravenous injection of India ink. After successful modeling, the mice were euthanized after 4 weeks of gastric gavage according to groups. The 24 h urinary total protein (24 h UTP), urine β2-microglobulin (β2-MG), serum total protein, albumin, IgA, etc. were detected in each group. Flow cytometry was used to determine the proportion of T helper 17 (Th17) cells in spleen cell suspension. Western blot was employed to detect the expression of adenosine 5'-monophosphate-activated protein kinase α (AMPKα), phosphorylated AMPKα (p-AMPKα), acetyl-CoA carboxylase 1 (ACC1), and phosphorylated ACC1 (p-ACC1) in Th17 cells. Pathological changes in the spleen and kidneys were observed. ResultCompared with the normal group, the IgAVN model group showed significant increases in 24 h UTP, urine β2-MG, total cholesterol (P<0.05), serum interleukin-17 (IL-17), IgA, Th17 proportion in the spleen cell suspension, and IL-17 expression in the spleen tissue (P<0.01), and significantly decreased serum total protein, albumin, p-AMPKα/AMPKα, and p-ACC1/ACC1 expression of Th17 cells (P<0.01). Compared with the IgAVN model group, in the 4th week, the 24 h UTP, urine β2-MG, serum IL-17, IgA levels, and renal IgA deposition were significantly reduced in each treatment group (P<0.01), and the Th17 proportion and IL-17 expression in spleen tissue were significantly decreased (P<0.05, P<0.01). Serum albumin levels significantly increased (P<0.05). Compared with the IgAVN model group, the dexamethasone group and the high-dose HQH group showed increases in serum total protein (P<0.01), p-AMPKα/AMPKα, and p-ACC1/ACC1 expression of Th17 cells (P<0.05, P<0.01). The high-dose HQH group showed a significant decrease in total cholesterol level (P<0.05). Various treatment groups showed different degrees of improvement in spleen and kidney pathological changes. ConclusionHQH may affect Th17 cell differentiation by regulating the AMPK/ACC pathway, correcting immune inflammatory disorders, and exerting therapeutic effects on IgAVN.
10.Effects of icariin-astragaloside IV-puerarin mixture on cognitive function and ferroptosis amino acid metabolism pathway in APP/PS1 HAMP-/-mice
Shan LIU ; Xiaoping HE ; Yan ZHAO ; Jianmin ZHONG ; Yehua ZHANG ; Yiming LIU ; Jiaxuan LI ; Xianhui DONG
Chinese Journal of Pathophysiology 2024;40(3):502-510
AIM:To observe the effect of icariin-astragaloside Ⅳ-puerarin mixture(Yin-Huang-Ge mixture,YHG)on cognitive function and ferroptosis amino acid metabolism pathway in hepcidin(HAMP)knockout APPswe/PS1dE9(APP/PS1 HAMP-/-)mice.METHODS:The mice were divided into 7 groups:negative control(C57BL/6 mice)group,APP/PS1 group,APP/PS1 HAMP-/-group,APP/PS1+YHG group,APP/PS1 HAMP-/-+YHG group,APP/PS1+de-ferasirox(DFX)group,and APP/PS1 HAMP-/-+DFX group,with 6 mice in each group.The YHG and DFX were adminis-tered intragastrically,while the mice in C57 group,APP/PS1 group and APP/PS1 HAMP-/-group were given intragastric administration of distilled water,once a day for 2 months.The iron content in mouse brain tissues was detected by tissue iron kit.The morphological changes of the mitochondria in hippocampal neurons were observed by transmission electron microscopy.Morris water maze was used to detect the learning and memory ability of the mice.The content of neuronal nu-clear antigen(NeuN)in mouse brain tissues was detected by immunofluorescence staining.The expression of glutathione(GSH)in mouse brain tissues was detected by biochemical kit.The expression levels of glutamate-cysteine ligase catalytic subunit(GCLC)and glutamatase 2(GLS2)in mouse brain tissues were detected by Western blot.RESULTS:Compared with C57BL/6 mice,the brain iron content of APP/PS1 mice was significantly increased(P<0.01),the mitochondria were seriously damaged,the learning and memory ability was significantly decreased(P<0.05),the brain neurons were seri-ously damaged(P<0.01),and the expression levels of GSH,GCLC and GLS2 were significantly decreased(P<0.01).Compared with APP/PS1 mice,the brain iron content of APP/PS1 HAMP-/-mice was significantly increased(P<0.01),the mitochondria were seriously damaged,the learning and memory ability was significantly decreased(P<0.05),the brain neurons were seriously damaged(P<0.01),and the expression levels of GSH,GCLC and GLS2 were significantly decreased(P<0.05).After treatment with YHG and DFX,the brain iron content was significantly decreased(P<0.01),the mitochondrial damage was alleviated,the learning and memory ability was significantly increased(P<0.05),the brain neuron damage was alleviated(P<0.01),and the expression levels of GSH,GCLC and GLS2 were significantly increased(P<0.05).CONCLUSION:The YHG can improve the cognitive function of APP/PS1 HAMP-/-mice,and its mechanism may be related to the regulation of ferroptosis amino acid metabolism and the enhancement of antioxidant capacity.


Result Analysis
Print
Save
E-mail