1.Effect of Wenyang Huazhuo Formula (温阳化浊方) on Reproductive Aging,Ovarian Mechanical Micro-environment,and Offspring Reproductive Potential in Aged Model Mice
Jiaqi XU ; Xiaoli ZHAO ; Nan JIANG ; Kaixi LI ; Yafei DING ; Zimu WEN ; Yingying JIA ; Mengjun JIANG ; Tian XIA
Journal of Traditional Chinese Medicine 2025;66(6):612-620
ObjectiveTo explore the possible mechanisms of Wenyang Huazhuo Formula (温阳化浊方, WHF) in improving reproductive aging from the perspective of the ovarian mechanical microenvironment. MethodsThe experiment included five groups, 3-month group (20 female mice at 3 months of age), 6-month group (20 female mice at 6 months of age), 6-month + WHF group (20 female mice at 5 months of age treated with WHF), 9-month group (20 female mice at 9 months of age), and 9-month + WHF group (20 female mice at 8 months of age treated with WHF). The 6-month + WHF group and 9-month + WHF group were orally administered WHF 41.2 g/(kg·d) once daily for 4 consecutive weeks. The other three groups received no intervention. Reproductive hormone levels were measured by ELISA. HE staining was used to count the numbers of various stages of follicles. Ovarian hyaluronic acid (HA) content and collagen fiber content were measured to evaluate the ovarian mechanical microenvironment. Superovulation was performed to observe the number of eggs obtained, as well as the number of offspring and birth weight to assess fertility. The in vitro fertilization and blastocyst culture of oocytes from female offspring in each group were observed to evaluate the effect of WHF on offspring reproductive potential. ResultsCompared with the 3-month group, the 6-month group and 9-month group showed significantly decreased serum levels of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH), decreased ovarian collagen content, and reduced numbers of primordial and secondary follicles. In contrast, the numbers of primary follicles, antral follicles, and atretic follicles increased. The levels of anti-Müllerian hormone (AMH), ovarian HA content, and the fertilization rate, cleavage rate, and blastocyst formation rate of oocytes from offspring were significantly lower (P<0.05). Compared with the 6-month group, the 6-month + WHF group showed significantly reduced serum levels of GnRH, FSH, and LH, with a significant decrease in primary follicles, antral follicles, and atretic follicles as well as increase of AMH levels, ovarian HA content, number of primordial and secondary follicle, egg count, and offspring birth weight (P<0.05). Compared with the 9-month group, the 9-month + WHF group exhibited reduced GnRH, FSH, and collagen fiber content, as well as reduced number of primary follicles, antral follicles, and atretic follicles. However, AMH levels, ovarian HA content, number of primordial and secondary follicle, egg count, offspring numbers, birth weight, fertilization rate, cleavage rate, and blastocyst formation rate of oocytes from offspring all significantly increased (P<0.05). ConclusionWHF can significantly improve the ovarian reserve, fertility, and reproductive potential in offspring during reproductive mid-life and late-life stages. Its effect may be related to the remodeling of the mechanical microenvironment of aging ovaries. Moreover, the effect on the mechanical microenvironment remodeling of late-stage ovaries and the improvement of the offspring reproductive potential is more significant.
2.Research progress on the mechanism of traditional Chinese medicine monomers acting on myelosuppression after chemotherapy based on the four properties theory
Sihan ZHANG ; Tingting WANG ; Zhifen ZHAO ; Hanyu KANG ; Jiaqi JI ; Ziqiang GUO ; Tong LIU ; Shiqing JIANG
China Pharmacy 2025;36(18):2341-2347
Chemotherapy is an important treatment for tumors, but most patients experience varying degrees of chemotherapy- induced myelosuppression. Four properties theory of traditional Chinese medicine (TCM) has unique advantages in improving chemotherapy-induced myelosuppression. The monomers from TCM with different properties and flavors, such as cold-natured (e.g. Scutellaria baicalensis, Rhus chinensis), cool-natured (e.g. Ligustrum lucidum, Ophiopogon japonicus), warm-natured (e.g. Panax ginseng, Epimedium brevicornu, Curcuma longa, Angelica sinensis), hot-natured (e.g. Cinnamomum cassia, Aconitum carmichaeli), and neutral-natured (e. g. donkey-hide gelatin, Lycium barbarum, Rhodiola rosea, fungi), can exert anti- myelosuppressive effects by reducing damage to hematopoietic stem/progenitor cells, improving the bone marrow hematopoietic microenvironment, inhibiting the oxidative stress response, regulating signaling pathways, so as to ultimately repaire inflammatory damage and improve hematopoietic function, thereby playing an anti-myelosuppressive role.
3.Baihe Wuyaotang Ameliorates NAFLD by Enhancing mTOR-mediated Liver Autophagy
Rui WANG ; Tiantian BAN ; Lihui XUE ; Xinyi FENG ; Jiyuan GUO ; Jiaqi LI ; Shenghe JIANG ; Xiaolei HAN ; Baofeng HU ; Wenli ZHANG ; Naijun WU ; Shuang LI ; Yajuan QI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):66-77
ObjectiveTo investigate the therapeutic effect of Baihe Wuyaotang (BWT) on non-alcoholic fatty liver disease (NAFLD) and elucidate its underlying mechanism. MethodC57BL/6J mice were randomly assigned to six groups: normal control, model, positive drug (pioglitazone hydrochloride 1.95×10-3 g·kg-1), and low-, medium-, and high-dose BWT (1.3,2.5 and 5.1 g·kg-1). Following a 12-week high-fat diet (HFD) inducement, the mice underwent six weeks of therapeutic intervention with twice-daily drug administration. Body weight was monitored weekly throughout the treatment period. At the fifth week, glucose tolerance (GTT) and insulin tolerance (ITT) tests were conducted. Subsequently, the mice were euthanized for the collection of liver tissue and serum, and the subcutaneous adipose tissue (iWAT) and epididymal adipose tissue (eWAT) were weighed. Serum levels of total triglycerides (TG) and liver function indicators,such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), were determined. Histological examinations, including oil red O staining, hematoxylin-eosin (HE) staining, Masson staining, and transmission electron microscopy, were performed to evaluate hepatic lipid deposition, pathological morphology, and ultrastructural changes, respectively. Meanwhile, Western blot and real-time quantitative polymerase chain reaction (Real-time PCR) were employed to analyze alterations, at both gene and protein levels, the insulin signaling pathway molecules, including insulin receptor substrate 1/2/protein kinase B/forkhead box gene O1 (IRS1/2/Akt/FoxO1), glycogen synthesis enzymes phosphoenolpyruvate carboxy kinase (Pepck) and glucose-6-phosphatase (G6Pase), lipid metabolism-related genes stearoyl-coA desaturase-1 (SCD-1) and carnitine palmitoyltransferase-1 (CPT-1), fibrosis-associated molecules α-smooth muscle actin (α-SMA), type Ⅰ collagen (CollagenⅠ), and the fibrosis canonical signaling pathway transforming growth factor-β1/drosophila mothers against decapentaplegic protein2/3(TGF-β1/p-Smad/Smad2/3), inflammatory factors such as interleukin(IL)-6, IL-8, IL-11, and IL-1β, autophagy markers LC3B Ⅱ/Ⅰ and p62/SQSTM1, and the expression of mammalian target of rapamycin (mTOR). ResultCompared with the model group, BWT reduced the body weight and liver weight of NAFLD mice(P<0.05, P<0.01), inhibited liver lipid accumulation, and reduced the weight of white fat: it reduced the weight of eWAT and iWAT(P<0.05, P<0.01) as well as the serum TG content(P<0.05, P<0.01). BWT improved the liver function as reflected by the reduced ALT and AST content(P<0.05, P<0.01). It improved liver insulin resistance by upregulating IRS2, p-Akt/Akt, p-FoxO1/FoxO1 expressions(P<0.05). Besides, it improved glucose and lipid metabolism disorders: it reduced fasting blood glucose and postprandial blood glucose(P<0.05, P<0.01), improved GTT and ITT(P<0.05, P<0.01), reduced the expression of Pepck, G6Pase, and SCD-1(P<0.01), and increased the expression of CPT-1(P<0.01). The expressions of α-SMA, Collagen1, and TGF-β1 proteins were down-regulated(P<0.05, P<0.01), while the expression of p-Smad/Smad2/3 was downregulated(P<0.05), suggesting BWT reduced liver fibrosis. BWT inhibited inflammation-related factors as it reduced the gene expression of IL-6, IL-8, IL-11 and IL-1β(P<0.01) and it enhanced autophagy by upregulating LC3B Ⅱ/Ⅰ expression(P<0.05)while downregulating the expression of p62/SQSTM1 and mTOR(P<0.05). ConclusionBWT ameliorates NAFLD by multifaceted improvements, including improving IR and glucose and lipid metabolism, anti-inflammation, anti-fibrosis, and enhancing autophagy. In particular, BWT may enhance liver autophagy by inhibiting the mTOR-mediated signaling pathway.
4.Construction of prediction model of neonatal necrotizing enterocolitis based on machine learning algorithms
Zhenyu LI ; Ling LI ; Jiaqi WEI ; Qinlei JIANG ; Hui WU
Chinese Journal of Neonatology 2024;39(3):150-156
Objective:To construct prediction models of necrotizing enterocolitis (NEC) using machine learning (ML) methods.Methods:From January 2015 to October 2021, neonates with suspected NEC symptoms receiving abdominal ultrasound examinations in our hospital were retrospectively analyzed. The neonates were assigned into NEC group (modified Bell's staging≥Ⅱ) and non-NEC group for diagnostic prediction analysis (dataset 1). The NEC group was subgrouped into surgical NEC group (staging≥Ⅲ) and conservative NEC group for severity analysis (dataset 2). Feature selection algorithms including extremely randomized trees, elastic net and recursive feature elimination were used to screen all variables. The diagnostic and severity prediction models for NEC were established using logistic regression, support vector machine (SVM), random forest, light gradient boosting machine and other ML methods. The performances of different models were evaluated using area under the receiver operating characteristic curve (AUC), sensitivity, specificity, negative predictive value and positive predictive value.Results:A total of 536 neonates were enrolled, including 234 in the NEC group and 302 in the non-NEC group (dataset 1).70 were in the surgical NEC group and 164 in the conservative NEC group (dataset 2). The variables selected by extremely randomized trees showed the best predictive performance in two datasets. For diagnostic prediction models, the SVM model had the best predictive performance, with AUC of 0.932 (95% CI 0.891-0.973) and accuracy of 0.844 (95% CI 0.793-0.895). A total of 11 predictive variables were determined, including portal venous gas, intestinal dilation, neutrophil percentage and absolute monocyte count at the onset of illness. For NEC severity prediction models, the SVM model showed the best predictive performance, with AUC of 0.835 (95% CI 0.737-0.933) and accuracy of 0.787 (95% CI 0.703-0.871). A total of 25 predictive variables were identified, including age of onset, C-reactive protein and absolute neutrophil count at clincial onset. Conclusions:NEC prediction model established using feature selection algorithm and SVM classification model in ML is helpful for the diagnosis of NEC and grading of disease severity.
5.Construction of Meridian and Collateral Homeostasis Model from Phenomics
Jiaqi SUN ; Luxia JIANG ; Zheng YU ; Zhenmei DU ; Shengyan ZHANG ; Yusheng TANG ; Ziqian WANG ; Xianfeng CAO ; Chuanbiao WEN
Journal of Traditional Chinese Medicine 2024;65(10):990-995
By applying "homeostasis" to the study of the meridian and collateral system, the concept of meridian and collateral homeostasis has been proposed which refers to a balanced and stable state of meridian and collateral system, and plays an important role in maintaining body health and can provide a reference for the diagnosis and treatment of diseases. Phenomics realizes the cross-scale correlation from micro-phenotypic data, such as genome, proteome, and metabolome, to macro-phenotypic data, such as physiological state, behavioral activities, and external manifestations. From the perspective of phenomics, this paper proposes a meridian and collateral homeostasis dynamic mapping model of "macroscopic signs and microscopic expression". This model combines macro signs such as the four examinations of traditional Chinese medicine (TCM), biophysical indicators of acupoints, and micro expression information such as genes, proteins, and metabolism, and systematically investigates the relationship between meridian and collateral homeostasis and health and disease, thereby providing ideas and references for the identification of pre-disease states as well as precise diagnosis and treatment in TCM.
6.On Post-chemotherapy Adverse Reactions based on the Theory of “Fire and Original Qi are Restricted”
Zixuan WANG ; Jiaqi JI ; Shiqing JIANG
Journal of Traditional Chinese Medicine 2024;65(4):419-423
Traditional Chinese medicine holds that chemotherapy drugs belong to “medicinal toxins”, which are fierce in nature, and while killing tumor cells, they also damage human vitality, firstly disturbing spleen and stomach functions. Based on LI Gao's theory that “fire and original qi are restricted to each other, and one wins while the other loses”, it is believed that the balance between fire and original qi is the guarantee to maintain the material and energy metabolism of the body. As the driving force of human life activities, original qi is the “yang qi” that dominates the qi of the whole body. When the function of spleen and stomach is impaired, and the replenishment of acquired source is insufficient, there will be deficiency of yang qi and hyperactivity of yin fire, manifested as various adverse reactions of the body after chemotherapy. Following the treatment principle of tonifying the spleen and stomach and lifting yang qi, it is recommended to use sweet and warm medicinals to remove heat, and take formulas such as Buzhong Yiqi Decoction (补中益气汤) and Danggui Buxue Decoction (当归补血汤) to treat various post-chemotherapy adverse reactions mainly manifested as fire pathogen damaging fluid and consuming qi, yin deficiency and fire exuberance, alleviate related symptoms, which can not only ensure adequate chemotherapy cycle, but also improve the anti-tumor effect, and improve the quality of life of patients.
7.Zuogui Jiangtang Jieyu Formula ameliorating hippocampal neuronal apoptosis in diabetic rats with depression by inhibiting JNK signaling pathway
Hongqing ZHAO ; Qingrui MOU ; Jiaqi JIANG ; Xuan ZHU ; Zhuo LIU ; Yuhong WANG
Digital Chinese Medicine 2024;7(2):195-208
Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation of JNK signaling pathway. Methods(i)A total of 72 specific pathogen-free(SPF)grade male Sprague Dawley(SD)rats were randomly divided into six groups,with 12 rats in each group:control,model,metformin(Met,0.18 g/kg)+fluoxetine(Flu,1.8 mg/kg),and the high-,medium-,and low-ZJJF dosages(ZJJF-H,20.52 g/kg;ZJJF-M,10.26 g/kg;ZJJF-L,5.13 g/kg)groups.All groups except control group were injected once via the tail vein with streptozotocin(STZ,38 mg/kg)combined with 28 d of chronic unpredictable mild stress(CUMS)to establish diabetic rat models with de-pression.During the CUMS modeling period,treatments were administered via gavage,with control and model groups receiving an equivalent volume of distilled water for 28 d.The effi-cacy of ZJJF in reducing blood sugar and alleviating depression was evaluated by measuring fasting blood glucose,insulin,and glycated hemoglobin levels,along with behavioral assess-ments,including the open field test(OFT),forced swim test(FST),and sucrose preference test(SPT).Hippocampal tissue damage and neuronal apoptosis were evaluated using hema-toxylin-eosin(HE)staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL)staining.Apoptosis-related proteins Bax,Bcl-2,caspase-3,and the ex-pression levels of JNK/Elk-1/c-fos signaling pathway were detected using Western blot and real-time quantitative polymerase chain reaction(RT-qPCR).(ii)To further elucidate the role of JNK signaling pathway in hippocampal neuronal apoptosis and the pharmacological ef-fects of ZJJF,an additional 50 SPF grade male SD rats were randomly divided into five groups,with 10 rats in each group:control,model,SP600125(SP6,a JNK antagonist,10 mg/kg),ZJJF(20.52 g/kg),and ZJJF(20.52 g/kg)+Anisomycin(Aniso,a JNK agonist,15 mg/kg)groups.Ex-cept for control group,all groups were established as diabetic rat models with depression,and treatments were administered via gavage for ZJJF and intraperitoneal injection for SP6 and Aniso for 28 d during the CUMS modeling period.Behavioral changes in rats were evaluated through the OFT,FST,and SPT,and hippocampal neuron damage and apoptosis were ob-served using HE staining,Nissl staining,TUNEL staining,and transmission electron mi-croscopy(TEM).Changes in apoptosis-related proteins and JNK signaling pathway in the hippocampal tissues of rats were also analyzed. Results(i)ZJJF significantly reduced the high blood glucose,insulin,and glycated he-moglobin levels in model rats(P<0.01).It increased autonomous activity and decreased de-spair-like behaviors(P<0.01),improved the pathological damage of hippocampal neurons,increased the number of neuronal nuclei(P<0.01),and reduced the number of mechanocytes,vacuolar cells,and apoptotic neurons(P<0.05,P<0.01,and P<0.01,respec-tively).ZJJF down-regulated the expression levels of pro-apoptotic proteins Bax and caspase-3(P<0.01),up-regulated the anti-apoptotic protein Bcl-2(P<0.01),and significantly inhibit-ed the overexpression of phosphorylated JNK(p-JNK),Elk-1,and c-fos(P<0.01).(ii)SP6 in-creased autonomous activity and reduced despair time in model rats(P<0.05),although it had no significant effects on sucrose preference(P>0.05).It increased the number of Nissl bodies in hippocampal neurons(P<0.01),reduced the protein expression levels of Bax(P<0.01)and caspase-3(P<0.05),and decreased the number of apoptotic neurons(P<0.05).SP6 also increased the expression level of Bcl-2(P<0.01),and inhibited the high expression levels of p-JNK,Elk-1,and c-fos(P<0.01,P<0.01,and P<0.05,respectively),suggesting that hip-pocampal neuronal apoptosis in diabetic rats with depression is associated with abnormal ac-tivation of JNK signaling pathway.Compared with ZJJF group,ZJJF+Aniso group showed a decrease in sucrose preference(P<0.05)and an increase in despair time(P<0.01)with more notable hippocampal neuronal damage.This group also exhibited a decrease in expression level(P<0.01)Bcl-2 and an increase in expression levels of Bax,caspase-3,p-JNK,Elk-1,and c-fos(P<0.01,P<0.05,P<0.05,P<0.01,and P<0.05,respectively),indicating that the antidepressant effects of ZJJF,its improvement of neuronal apoptosis,and regulation of JNK signaling molecules could all be reversed by a specific JNK agonist. Conclusion ZJJF exerts a significant hypoglycemic effect and ameliorates the apoptosis of hippocampal neurons by inhibiting the activation of JNK signaling pathway,which is a promising formula for the treatment of diabetic depression in clinical settings.
8.Role of uropathogenic Escherichia coli virulence factor TcpC in immune evasion and its pathogenic mechanism
Weiyu JIANG ; Jiaying FAN ; Liming FAN ; Jiadong WANG ; Ziyan JIANG ; Ziyu GUAN ; Qian OU ; Jiaqi FANG
Chinese Journal of Microbiology and Immunology 2024;44(3):198-204
Objective:To investigate the role of TcpC, a virulence factor of uropathogenic Escherichia coli (UPEC), in immune evasion, and analyze its related pathogenic mechanism. Methods:C57BL/6 mice were injected with 10 9 colony-forming unit of wild-type (CFT073 wt) or tcpc gene-knockout (CFT073 Δ tcpc) UPEC CFT073 strains from urethra into bladder to construct a mouse model of pyelonephritis. These mice were sacrificed 5 d after infection and their kidneys were taken to observe the gross pathological changes. Hematoxylin-eosin staining was used to observe histopathological changes in kidney tissues and immunohistochemistry was performed to locate TcpC in kidney tissues. The bacterial loads in urine samples of UPEC infected-mice were counted by ten-fold dilution method, and the presence of tcpc gene in the genomic DNA of bacteria from CFT073-infected mouse kidney or urine samples was measured by PCR. The expression of TcpC at mRNA level was detected by qRT-PCR after infecting dendritic cells with CFT073 wt strains. The influences of UPEC infection on the activation of NF-κB signaling pathway and the secretion of proinflammatory factors by dendritic cells were analyzed by Western blot and ELISA, respectively. The viability of UPEC strains in dendritic cells were observed by laser confocal microscope. Results:Compared with the CFT073 Δ tcpc group, the mice in the CFT073 wt group had obvious abscess in the kidneys as well as massive neutrophil infiltration and abundant TcpC in kidney tissues. The bacterial loads in the urine of CFT073 wt-infected mice were significantly higher than those in the urine of CFT073 Δ tcpc mice. PCR results showed that tcpc gene was successfully amplified from mouse kidney and urine samples. Increased expression of TcpC at both mRNA and protein levels was detected in CFT073 wt-infected dendritic cells. CFT073 wt infection inhibited the phosphorylation of NF-κB p50 and the production of proinflammatory factors in dendritic cells. TcpC promoted the survival of CFT073 wt in dendritic cells. Conclusions:TcpC expression increases significantly during CFT073 wt infection or in mice with CFT073 wt-induced pyelonephritis. It promotes the survival of CFT073 wt in dendritic cells by inhibiting the activation of NF-κB signaling pathway and reducing the secretion of pro-inflammatory cytokines. TcpC is involved in the pathogenesis of UPEC and immune evasion.
9.Protective mechanism of Paeoniae Radix Alba against chemical liver injury based on network pharmacology, molecular docking, and in vitro experiments
Shuangqiao Liu ; Xin Liu ; Sijia Jiang ; Min Fu ; Jinxi Hu ; Jiaqi Liu ; Xiaoxu Fan ; Yingtong Feng ; Shujing Zhang ; Jingxia Wang
Journal of Traditional Chinese Medical Sciences 2024;11(1):55-66
Objective:
To explore and validate the potential targets of Paeoniae Radix Alba (P. Radix, Bai Shao) in protecting against chemical liver injury through network pharmacology, molecular docking technology, and in vitro cell experiments.
Methods:
Network pharmacology was used to identify the common potential targets of P. Radix and chemical liver injury. Molecular docking was used to fit the components, which were subsequently verified in vitro. A cell model of hepatic fibrosis was established by activating hepatic stellate cell (HSC)-LX2 cells with 10 ng/mL transforming growth factor-β1. The cells were exposed to different concentrations of total glucosides of paeony (TGP), the active substance of P. Radix, and then evaluated using the cell counting kit-8 assay, enzyme-linked immunosorbent assay, and western blot.
Results:
Analysis through network pharmacology revealed 13 key compounds of P. Radix, and the potential targets for preventing chemical liver injury were IL-6, AKT serine/threonine kinase 1, jun proto-oncogene, heat shock protein 90 alpha family class A member 1 (HSP90AA1), peroxisome proliferator activated receptor gamma (PPARG), PTGS2, and CASP3. Gene Ontology (GO) enrichment analysis indicated the involvement of response to drugs, membrane rafts, and peptide binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the main pathways involved lipid and atherosclerosis and chemical carcinogenesis-receptor activation. Paeoniflorin and albiflorin exhibited strong affinity for HSP90AA1, PTGS2, PPARG, and CASP3. Different concentrations of TGP can inhibit the expression of COL-Ⅰ, COL-Ⅲ, IL-6, TNF-α, IL-1β, HSP-90α, and PTGS2 while increasing the expression of PPAR-γ and CASP3 in activated HSC-LX2 cells.
Conclusion
P. Radix primarily can regulate targets such as HSP90AA1, PTGS2, PPARG, CASP3. TGP, the main active compound of P. Radix, protects against chemical liver injury by reducing the inflammatory response, activating apoptotic proteins, and promoting the apoptosis of activated HSCs.
10.Clinical efficacy and safety of kyphoplasty for the treatment of osteoporotic vertebral compression fractures at different surgical timings based on the theory of “dynamic-static integration”
Zunwang Li ; Jiang Chen ; Dekui Li ; Jiayu Yang ; Jiaqi Qin ; Yuqing Guan
Journal of Traditional Chinese Medical Sciences 2024;11(1):86-92
Objective:
To investigate the clinical efficacy and safety of percutaneous kyphoplasty at different surgical timings in the treatment of osteoporotic vertebral compression fracture (OVCF) based on the theory of “dynamic-static integration”.
Methods:
Patients with OVCF who underwent percutaneous kyphoplasty in our hospital were selected and divided into Groups A, B, and C for those undergoing surgery within 7, 7–21, and >21 days of fracture occurrence. The variations in the amount of bone cement injected, pre- and post-operative pain levels, functional activity, deformity correction of the injured vertebrae, bone cement leakage, and vertebral body height loss were compared among the three groups.
Results:
Regarding pain relief and functional activity, the postoperative Visual Analog Scale and Oswestry Disability Index scores of the three groups significantly improved. Furthermore, the deformities of the injured vertebrae in the three groups were significantly corrected, with Groups A and B exhibiting superior correction compared to Group C. Moreover, the bone cement leakage rates in groups A and C were higher than that in Group B. At the 3-month follow-up, the loss of vertebral height in Group C was significantly higher than those in groups A and B.
Conclusion
Kyphoplasty is effective for OVCF treatment. Early surgery can effectively restore the vertebral height of the injured vertebra, reduce kyphosis, and reduce height loss of the injured vertebra after surgery; nevertheless, treatment within 1–3 weeks of the fracture can reduce the occurrence of bone cement leakage, making the surgery safer. Therefore, surgical treatment within 1–3 weeks of fracture is safer and can achieve satisfactory therapeutic effects. From the perspective of traditional Chinese medicine, PKP surgery can transform the fracture end from a micromotion state to a fixed state, which fully embodies the theory of “dynamic-static integration”.


Result Analysis
Print
Save
E-mail