1.Effects of jaceosidin on inflammatory injury in osteoarthritis rats by regulating AMPK/NLRP3 signaling pathway
Chao WEI ; Jiang YU ; Guanyun SHENG ; Yi CAI
China Pharmacy 2025;36(4):421-426
OBJECTIVE To investigate the effects of jaceosidin on osteoarthritis (OA) of rats by regulating adenosine monophosphate-activated protein kinase (AMPK)/NOD-like receptor protein 3 (NLRP3) pathway. METHODS Rats were randomly separated into OA group, jaceosidin group (33.33 mg/kg), AMPK inhibitor (Compound C, 20 mg/kg) group, jaceosidin (33.33 mg/kg)+Compound C (20 mg/kg) group, and sham operation group, with 12 rats in each group. Except for the sham operation group, the OA model was induced with modified Hulth method in all other groups. After successful modeling, they were given a relevant dose of jaceosidin or normal saline intragastrically, and Compound C or normal saline intraperitoneally, once a day, for consecutive 8 weeks. Twenty-four h after the last medication, the degree of knee joint swelling in rats from each group was measured. The pathological changes of the articular cartilage tissue in the knee joints, and the Mankin score were assessed. The levels of tumor necrosis factor-α (TNF-α), interleukin-18 (IL-18), and IL-6, as well as the protein expressions of collagen Ⅱ, aggrecan (ACAN), and a disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5), phosphorylated AMPK (p-AMPK), AMPK, NLRP3, cleaved-caspase-1, and cleaved-IL-1β were detected in the articular cartilage tissue of rats’ knees. RESULTS Compared with OA group, the cartilage tissue defect of jaceosidin group was relieved, the cartilage matrix staining was deepened, and the number of chondrocytes was increased. Knee swelling, Mankin score, the levels of TNF- α, IL-18 and IL-6, and protein expressions of ADAMTS5, NLRP3, cleaved-caspase-1 and cleaved-IL-1β in knee cartilage were significantly decreased or down-regulated. Protein expressions of collagen Ⅱ, ACAN and phosphorylation level of AMPK were significantly increased or up-regulated (P<0.05). Compound C significantly reversed the improvement effects of jaceosidin on the above indexes of OA rats (P<0.05). CONCLUSIONS Jaceosidin may inhibit inflammation and extracellular matrix degradation in OA rats by regulating the AMPK/NLRP3 signaling pathway.
2.Research progress in small molecule inhibitors of complement factor B
Shuai WEN ; Yao ZHAO ; Yan WANG ; Xing LI ; Yi MOU ; Zheng-yu JIANG
Acta Pharmaceutica Sinica 2025;60(1):37-47
The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several diseases including paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), C3 glomerular disease (C3G) and age-related macular degeneration (AMD). Complement factor B (CFB) is a trypsin-like serine protein that circulates in the human bloodstream in a latent form. As a key node of the alternative pathway, it is an important target for the treatment of diseases mediated by the complement system. With the successful launch of iptacopan, the CFB small molecule inhibitors has become a current research hotspot, a number of domestic and foreign pharmaceutical companies are actively developing CFB small molecule inhibitors. In this paper, the research progress of CFB small molecule inhibitors in recent years is systematically summarized, the representative compounds and their activities are introduced according to structural types and design ideas, so as to provide reference and ideas for the subsequent research on CFB small molecule inhibitors.
3.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
4.Application of Engineered Exosomes in Tumor-targeted Therapy
Jia-Lu SONG ; Yi-Xin JIN ; Xing-Yu MU ; Yu-Huan JIANG ; Jing WANG
Progress in Biochemistry and Biophysics 2025;52(5):1140-1151
Tumors are the second leading cause of death worldwide. Exosomes are a type of extracellular vesicle secreted from multivesicular bodies, with particle sizes ranging from 40 to 160 nm. They regulate the tumor microenvironment, proliferation, and progression by transporting proteins, nucleic acids, and other biomolecules. Compared with other drug delivery systems, exosomes derived from different cells possess unique cellular tropism, enabling them to selectively target specific tissues and organs. This homing ability allows them to cross biological barriers that are otherwise difficult for conventional drug delivery systems to penetrate. Due to their biocompatibility and unique biological properties, exosomes can serve as drug delivery systems capable of loading various anti-tumor drugs. They can traverse biological barriers, evade immune responses, and specifically target tumor tissues, making them ideal carriers for anti-tumor therapeutics. This article systematically summarizes the methods for exosome isolation, including ultracentrifugation, ultrafiltration, size-exclusion chromatography (SEC), immunoaffinity capture, and microfluidics. However, these methods have certain limitations. A combination of multiple isolation techniques can improve isolation efficiency. For instance, combining ultrafiltration with SEC can achieve both high purity and high yield while reducing processing time. Exosome drug loading methods can be classified into post-loading and pre-loading approaches. Pre-loading is further categorized into active and passive loading. Active loading methods, including electroporation, sonication, extrusion, and freeze-thaw cycles, involve physical or chemical disruption of the exosome membrane to facilitate drug encapsulation. Passive loading relies on drug concentration gradients or hydrophobic interactions between drugs and exosomes for encapsulation. Pre-loading strategies also include genetic engineering and co-incubation methods. Additionally, we review approaches to enhance the targeting, retention, and permeability of exosomes. Genetic engineering and chemical modifications can improve their tumor-targeting capabilities. Magnetic fields can also be employed to promote the accumulation of exosomes at tumor sites. Retention time can be prolonged by inhibiting monocyte-mediated clearance or by combining exosomes with hydrogels. Engineered exosomes can also reshape the tumor microenvironment to enhance permeability. This review further discusses the current applications of exosomes in delivering various anti-tumor drugs. Specifically, exosomes can encapsulate chemotherapeutic agents such as paclitaxel to reduce side effects and increase drug concentration within tumor tissues. For instance, exosomes loaded with doxorubicin can mitigate cardiotoxicity and minimize adverse effects on healthy tissues. Furthermore, exosomes can encapsulate proteins to enhance protein stability and bioavailability or carry immunogenic cell death inducers for tumor vaccines. In addition to these applications, exosomes can deliver nucleic acids such as siRNA and miRNA to regulate gene expression, inhibit tumor proliferation, and suppress invasion. Beyond their therapeutic applications, exosomes also serve as tumor biomarkers for early cancer diagnosis. The detection of exosomal miRNA can improve the sensitivity and specificity of diagnosing prostate and pancreatic cancers. Despite their promising potential as drug delivery systems, challenges remain in the standardization and large-scale production of exosomes. This article explores the future development of engineered exosomes for targeted tumor therapy. Plant-derived exosomes hold potential due to their superior biocompatibility, lower toxicity, and abundant availability. Furthermore, the integration of exosomes with artificial intelligence may offer novel applications in diagnostics, therapeutics, and personalized medicine.
5.Research progress on the role of methylation modifications in periodontitis
JIANG Yu ; ZHANG Yuwei ; LIU Chengcheng ; DING Yi
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(10):884-895
Periodontitis is a chronic inflammatory disease that affects the tooth-supporting tissues, and it constitutes a major global public health concern. Methylation modifications, including DNA methylation, histone methylation, and RNA m6A modification, represent reversible processes coordinately regulated by methyltransferases, demethylases, and binding proteins. In periodontitis, aberrant methylation modifications suppress Toll-like receptor 2 expression, leading to oral microbial dysbiosis. These modifications further disrupt normal immune regulatory functions through C-C motif chemokine ligands, Fc-γ receptor-mediated phagocytosis, and NF-κB signaling pathways, resulting in localized immune-inflammatory imbalance in periodontal tissues. In addition, various methylation modifications regulate the expression of Runt-related transcription factor 2 (RUNX2), osteoblast-specific transcription factor Osterix (OSX), and receptor activator of nuclear factor-κB ligand (RANKL), thereby interfering with osteoclast and osteoblast differentiation, disrupting bone homeostasis, and ultimately driving alveolar bone resorption. Methylation-related biomarkers demonstrate promising potential for periodontitis screening and prognostic evaluation. While numerous abnormally methylated sites have been identified in periodontitis, the precise signaling pathways and comprehensive epigenetic regulatory networks remain to be fully elucidated. This review systematically summarizes the functional roles of DNA methylation modifications in the pathogenesis of periodontitis and explores their potential value in etiological studies, diagnostic biomarker discovery, and targeted therapeutic interventions, with the aim of providing novel perspectives for periodontitis prevention and treatment strategies.
6.Transzonal Projections and Follicular Development Abnormalities in Polycystic Ovary Syndrome
Di CHENG ; Yu-Hua CHEN ; Xia-Ping JIANG ; Lan-Yu LI ; Yi TAN ; Ming LI ; Zhong-Cheng MO
Progress in Biochemistry and Biophysics 2025;52(10):2499-2511
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting a substantial proportion of women of reproductive age. It is frequently associated with ovulatory dysfunction, infertility, and an increased risk of chronic metabolic diseases. A hallmark pathological feature of PCOS is the arrest of follicular development, closely linked to impaired intercellular communication between the oocyte and surrounding granulosa cells. Transzonal projections (TZPs) are specialized cytoplasmic extensions derived from granulosa cells that penetrate the zona pellucida to establish direct contact with the oocyte. These structures serve as essential conduits for the transfer of metabolites, signaling molecules (e.g., cAMP, cGMP), and regulatory factors (e.g., microRNAs, growth differentiation factors), thereby maintaining meiotic arrest, facilitating metabolic cooperation, and supporting gene expression regulation in the oocyte. The proper formation and maintenance of TZPs depend on the cytoskeletal integrity of granulosa cells and the regulated expression of key connexins, particularly CX37 and CX43. Recent studies have revealed that in PCOS, TZPs exhibit significant structural and functional abnormalities. Contributing factors—such as hyperandrogenism, insulin resistance, oxidative stress, chronic inflammation, and dysregulation of critical signaling pathways (including PI3K/Akt, Wnt/β‑catenin, and MAPK/ERK)—collectively impair TZP integrity and reduce their formation. This disruption in granulosa-oocyte communication compromises oocyte quality and contributes to follicular arrest and anovulation. This review provides a comprehensive overview of TZP biology, including their formation mechanisms, molecular composition, and stage-specific dynamics during folliculogenesis. We highlight the pathological alterations in TZPs observed in PCOS and elucidate how endocrine and metabolic disturbances—particularly androgen excess and hyperinsulinemia—downregulate CX43 expression and impair gap junction function, thereby exacerbating ovarian microenvironmental dysfunction. Furthermore, we explore emerging therapeutic strategies aimed at preserving or restoring TZP integrity. Anti-androgen therapies (e.g., spironolactone, flutamide), insulin sensitizers (e.g., metformin), and GLP-1 receptor agonists (e.g., liraglutide) have shown potential in modulating connexin expression and enhancing granulosa-oocyte communication. In addition, agents such as melatonin, AMPK activators, and GDF9/BMP15 analogs may promote TZP formation and improve oocyte competence. Advanced technologies, including ovarian organoid models and CRISPR-based gene editing, offer promising platforms for studying TZP regulation and developing targeted interventions. In summary, TZPs are indispensable for maintaining follicular homeostasis, and their disruption plays a pivotal role in the pathogenesis of PCOS-related folliculogenesis failure. Targeting TZP integrity represents a promising therapeutic avenue in PCOS management and warrants further mechanistic and translational investigation.
7.The Influence of Social Context on Perceptual Decision Making and Its Computational Neural Mechanisms
Yu-Pei LIU ; Yu-Shu WANG ; Bin ZHAN ; Rui WANG ; Yi JIANG
Progress in Biochemistry and Biophysics 2025;52(10):2568-2584
Perceptual decision making refers to the process by which individuals make choices and judgments based on sensory information, serving as a fundamental ability for human adaptation to complex environments. While traditional research has focused on perceptual decision making in isolated contexts, growing evidence highlights the profound influence of social contexts prevalent in real-world scenarios. As a crucial factor supporting individual survival and development, social context not only provides rich information sources but also shapes perceptual decision making through top-down processing mechanisms, prompting researchers to recognize the inherently social nature of human decisions. Empirical studies have demonstrated that social information, such as others’ choices or group norms, can systematically bias individuals’ perceptual decisions, often manifesting as conformity behaviors. Social influence can also facilitate performance under certain conditions, particularly when individuals can accurately identify and adopt high-quality social information. The impact of social context on perceptual decisions is modulated by a variety of external and internal factors, including group characteristics(e.g., group size, response consistency), attributes of peers (e.g., familiarity, social status, distinctions between human and artificial agents), as well as individual differences such as confidence, personality traits, and developmental stage. The motivations driving social influence encompass three primary mechanisms: improving decision accuracy through informational influence, gaining social acceptance through normative influence, and maintaining positive self-concept. Recent computational approaches have employed diverse theoretical frameworks to provide valuable insights into the cognitive mechanisms underlying social influence in perceptual decision making. Reinforcement learning models demonstrate how social feedback shapes future choices through reward-based updating. Bayesian inference frameworks describe how individuals integrate personal beliefs with social information based on their respective reliabilities, dynamically updating beliefs to optimize decisions under uncertainty. Drift diffusion models offer powerful tools to decompose social influence into distinct cognitive components, allowing researchers to differentiate between changes in perceptual processing and shifts in decision criteria. Collectively, these models establish a comprehensive methodological foundation for disentangling the multiple pathways by which social context shapes perceptual decisions. Neuroimaging and electrophysiological studies provide converging evidence that social context influences perceptual decision making through multi-level neural mechanisms. At early perceptual processing stages, social influence modulates sensory evidence accumulation in parietal cortex and directly alters primary visual cortex activity, while guiding selective attention to stimulus features consistent with social norms through attentional alignment mechanisms. At higher cognitive levels, the reward system (ventral striatum, ventromedial prefrontal cortex) is activated during group-consistent decisions; emotion-processing networks (anterior cingulate cortex, insula, amygdala) regulate experiences of social acceptance and rejection; and mentalizing-related brain regions (dorsomedial prefrontal cortex, temporoparietal junction) support inference of others’ mental states and social information integration. These neural circuits work synergistically to achieve top-down multi-level modulation of perceptual decision making. Understanding the mechanisms by which social context shapes perceptual decision making has broad theoretical and practical implications. These insights inform the optimization of collective decision-making, the design of socially adaptive human-computer interaction systems, and interventions for cognitive disorders such as autism spectrum disorder and anorexia nervosa. Future studies should combine computational modeling and neuroimaging approaches to systematically investigate the multi-level and dynamic nature of social influences on perceptual decision making.
8.Significance and role of apprenticeship education in Traditional Chinese Medicine curriculum of western medical institutions
Dan YANG ; Ziman YU ; Yi LIU ; Xiaohu SHI ; Lan JIANG ; Yamin ZHANG ; Guangchan JING ; Qunli WU
Basic & Clinical Medicine 2024;44(4):582-584
The apprenticeship education of Traditional Chinese medicine(TCM)is an important pathway for the cultivation of talents in TCM education.The combination of institutional education and apprenticeship education is considered to be the most suitable educational model that aligns with the inherent characteristics of TCM education.The current status of TCM education in western medical institutions and the main challenges include the difficulty in transitioning between western and Chinese medical reasoning and limited clinical internship hours for TCM.The strengths and features of TCM apprenticeship education lie in cultural heritage,classical teachings,mentorship,practice orientation and personalized education.Therefore,integration of TCM apprenticeship education and clinical internships for western medical students represents a new educational model for medical undergraduates.
9.Clinical observation of splenectomy with distal pancreatectomy during cytoreductive surgery in epithelial ovarian cancer
Yi-Xuan LIU ; Qian-Qian YAN ; Yu-Lian CHEN ; Ying ZHOU ; Rong JIANG
Fudan University Journal of Medical Sciences 2024;51(1):50-55
Objective To evaluate the safety and efficacy of splenectomy with distal pancreatectomy during cytoreductive surgery in epithelial ovarian cancer(EOC).Methods A total of 17 patients from Zhongshan Hospital,Fudan University and the First Affiliated Hospital of University of Science and Technology of China(Anhui Provincial Hospital)received splenectomy with distal pancreatectomy during cytoreductive surgery in EOC were recruited.Their clinicopathological characteristics,postoperative complications and survival situation were retrospective analyzed.Results Of the 17 patients,there were 13 primary cases and 4 recurrent cases.Eleven cases(64.7%)had preoperative imaging finding with metastatic lesions in the splenic hilum,among whom 6 cases had distal pancreas metastasis during the operation.The drainage was placed in the splenic fossa for the measurement of amylase levels in drain fluid and was removed after 8(3-12)days.There were 4 patients had postoperative pancreatic fistula(POPF)of grade A,3 patients had POPF of grade B and no POPF of grade C occurred.The 2 patients with POPF of grade B improved after percutaneous drainage,and the rest recovered with somatostatin,antibiotic drugs and medicines without perioperative mortality.The interval between surgery to chemotherapy was 17.5(13-37)days.The median follow-up time was 14(4-64)months and the median progression-free survival was 10(5-32)months.Conclusion Splenectomy with distal pancreatectomy as part of cytoreduction surgery in EOC is needed for optimal resection,and the complication of pancreatic fistula could be managed conservatively.
10.Analysis of fertility preservation and HPV negative conversion rate of LEEP by separating the vesicorectal space
Ting JIANG ; Yu XIE ; Ying-Xin GONG ; Yun-Qiang ZHANG ; Yue SHI ; Ruo-Yi GUO ; Qing WANG ; Xiao-Xia LIU
Fudan University Journal of Medical Sciences 2024;51(2):211-217
Objective To explore the eradication rate of human papillomavirus(HPV)and gestational outcome of patients with high-grade squamous intraepithelial disease of the cervix(HSIL)after loop electrosurgical excision procedure(LEEP)by transvaginal dissection of the vesicorectal form the cervix.Methods A total of 53 patients treated with LEEP by transvaginal dissection of the vesicorectal form the cervix in Obstetrics and Gynecology Hospital,Fudan University from Jan to Dec,2019 were investigated.Clinical information of cervical cytological examination,HPV test and cervical biopsy under colposcopy were followed up for 6,12 and 24 months post-LEEP were collected.HPV infection in these 53 patients were compared before and after LEEP surgery.The rate of successful fertility of the cohort,the HPV conversion rate of patients with hysterectomy and LEEP done were compared.The association between the pathological type and positive surgical margin and the association between HPV infection type and positive surgical margin were analyzed.Results HPV infection rate of was 94.3%(50/53)and the proportion of HPV16 and/or 18 infection was 75.5%(40/53).Mono-HPV infection rate(69.8%,37/53)was significantly higher than mixed HPV infection rate(22.7%,13/53).Thirty-eight patients(71.7%)were found with positive surgical margin in previous LEEP operation.Fifteen patients had recurrence(28.3%)and 40 patients(75.5%)successfully delivered baby after surgery.Postoperative pathology was mainly HSIL,accounting for 66%(30/53),and 28.3%patients(15/53)had no pathological change.Forty cases had satisfying fertility-conservative operation outcome with negative surgical margin,and 38 patients eradicated HPV infection after LEEP,which took up 95%of patients with satisfying fertility-conservative operation.There was no significant difference of positive resection margin rate in between groups of HPV16/18 infection and other types.Five cases had successful delivery(12.5%,5/40)with 1 case of vaginal delivery and 4 cases of cesarean section.Among these 5 cases,3 cases undertook preventive cervical cerclage,with 1 case of vaginal delivery and 2 cases of cesarean sections.Conclusion HPV eradication rate and surgical outcome could be significantly improved by LEEP with transvaginal dissection of the vesicorectal from the cervix,which satisfied the fertility preservation of females at reproductive age.


Result Analysis
Print
Save
E-mail