1.Phosphoproteomics Reveals the AMPK Substrate Network in Response to DNA Damage and Histone Acetylation
Jiang YUEJING ; Cong XIAOJI ; Jiang SHANGWEN ; Dong YING ; Zhao LEI ; Zang YI ; Tan MINJIA ; Li JIA
Genomics, Proteomics & Bioinformatics 2022;20(4):597-613
		                        		
		                        			
		                        			AMP-activated protein kinase(AMPK)is a conserved energy sensor that plays roles in diverse biological processes via phosphorylating various substrates.Emerging studies have demon-strated the regulatory roles of AMPK in DNA repair,but the underlying mechanisms remain to be fully understood.Herein,using mass spectrometry-based proteomic technologies,we systematically investigate the regulatory network of AMPK in DNA damage response(DDR).Our system-wide phosphoproteome study uncovers a variety of newly-identified potential substrates involved in diverse biological processes,whereas our system-wide histone modification analysis reveals a link between AMPK and histone acetylation.Together with these findings,we discover that AMPK pro-motes apoptosis by phosphorylating apoptosis-stimulating of p53 protein 2(ASPP2)in an irradia-tion(IR)-dependent manner and regulates histone acetylation by phosphorylating histone deacetylase 9(HDAC9)in an IR-independent manner.Besides,we reveal that disrupting the his-tone acetylation by the bromodomain BRD4 inhibitor JQ-1 enhances the sensitivity of AMPK-deficient cells to IR.Therefore,our study has provided a resource to investigate the interplay between phosphorylation and histone acetylation underlying the regulatory network of AMPK,which could be beneficial to understand the exact role of AMPK in DDR.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail