1.Characteristics of mitochondrial translational initiation factor 2 gene methylation and its association with the development of hepatocellular carcinoma
Huajie XIE ; Kai CHANG ; Yanyan WANG ; Wanlin NA ; Huan CAI ; Xia LIU ; Zhongyong JIANG ; Zonghai HU ; Yuan LIU
Journal of Clinical Hepatology 2025;41(2):284-291
ObjectiveTo investigate the characteristics of mitochondrial translational initiation factor 2 (MTIF2) gene methylation and its association with the development and progression of hepatocellular carcinoma (HCC). MethodsMethSurv and EWAS Data Hub were used to perform the standardized analysis and the cluster analysis of MTIF2 methylation samples, including survival curve analysis, methylation signature analysis, the association of tumor signaling pathways, and a comparative analysis based on pan-cancer database. The independent-samples t test was used for comparison between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. The Cox proportional hazards model was used to perform the univariate and multivariate survival analyses of methylation level at the CpG site. The Kaplan-Meier method was used to investigate the survival differences between the patients with low methylation level and those with high methylation level, and the Log-likelihood ratio method was used for survival difference analysis. ResultsGlobal clustering of MTIF2 methylation showed that there was no significant difference in MTIF2 gene methylation level between different races, ethnicities, BMI levels, and ages. The Kaplan-Meier survival curve analysis showed that the patients with N-Shore hypermethylation of the MTIF2 gene had a significantly better prognosis than those with hypomethylation (hazard ratio [HR]=0.492, P<0.001), while there was no significant difference in survival rate between the patients with different CpG island and S-Shore methylation levels (P>0.05). The methylation profile of the MTIF2 gene based on different ages, sexes, BMI levels, races, ethnicities, and clinical stages showed that the N-Shore and CpG island methylation levels of the MTIF2 gene decreased with the increase in age, and the Caucasian population had significantly lower N-Shore methylation levels of the MTIF2 gene than the Asian population (P<0.05); the patients with clinical stage Ⅳ had significantly lower N-Shore and CpG island methylation levels of the MTIF2 gene than those with stage Ⅰ/Ⅱ (P<0.05). Clinical validation showed that the patients with stage Ⅲ/Ⅳ HCC had a significantly lower methylation level of the MTIF2 gene than those with stage Ⅰ/Ⅱ HCC and the normal population (P<0.05). ConclusionN-Shore hypomethylation of the MTIF2 gene is a risk factor for the development and progression of HCC.
2.Technology optimization and in vitro anti-tumor effect evaluation of reactive oxygen species-responsive metho-trexate-modified paclitaxel/icariin micelles
Naijian ZOU ; Liang KONG ; Lei CHANG ; Pengbo WAN ; Xiaolin JIANG ; Mingdian YUAN ; Yingqiang LU
China Pharmacy 2025;36(3):285-292
OBJECTIVE To prepare reactive oxygen species (ROS)-responsive methotrexate (MTX)-modified paclitaxel (PTX)/icariin (ICA) micelles (MTX-oxi-Ms@PTX/ICA), and perform technology optimization and in vitro anti-tumor effect evaluation. METHODS Synergistic toxicity concentration range of PTX and ICA was screened by synergistic toxicity test. The micelles were prepared by thin film hydration method, and their technology was optimized by response surface methodology. The fundamental characteristics of the micelles prepared by the optimal technology were evaluated. The micelles’ cytotoxicity, targeting ability to renal carcinoma RENCA cells of mice, and their inhibitory effects on invasion and migration were assessed. RESULTS Results of synergistic toxicity experiments demonstrated that the strongest synergistic effect occurred when PTX concentrations ranged from 2.5 to 10 μmol/L and ICA concentrations ranged from 5 to 15 μmol/L. The optimal technology of MTX-oxi-Ms@PTX/ ICA was determined to include 80 mg Soluplus®, Soluplus® and TPGS1000 mass ratio of 4∶1 (mg/mg), 2 mg DSPE-PEG2000-TK- PEG5000, 2 mg DSPE-PEG2000-MTX, 1 mg PTX, and 1.5 mg ICA, with a hydration temperature of 35 ℃ and a formulation volume of 5 mL. Under the optimal conditions, average encapsulation efficiency of PTX and ICA in 3 batches of MTX-oxi- Ms@PTX/ICA reached 92.75%, the critical micelle concentration (CMC) was 0.007 9 mg/mL, the particle size was (62.09±1.68) nm, the polydispersity index (PDI) was 0.046±0.032, and the Zeta potential was (-2.47±0.15) mV. Within 30 days of placement, there was no significant change E-mail:yingqiang_1126@163.com in particle size and polydispersity index of micelle. In vitro release experiments showed that MTX-oxi-Ms@PTX/ICA released drugs more rapidly in oxidative environments. The half maximal inhibitory concentration of MTX-oxi-Ms@PTX/ICA against RENCA cells was (5.170±0.036) μmol/L. In vitro cellular uptake experiments indicated that compared with unmodified micelles, MTX modified micelles had stronger targeting effects on cancer cells, and also significantly enhanced the inhibitory ability of invasion and migration of RENCA cells (P<0.05). CONCLUSIONS MTX-oxi-Ms@PTX/ICA micelles are successfully prepared, which exhibit high encapsulation efficiency, low critical micelle concentration, and good stability. These micelles demonstrate significant cytotoxicity against RENCA cells and effectively inhibit cancer cell invasion and migration.
3.Quorum-sensing inhibition of flavonoid glycosides from Epimedium brevicornum
Xianrui JIANG ; Yaqian DUAN ; Chang LIU ; Chengzhong ZHANG
Journal of Pharmaceutical Practice and Service 2025;43(4):169-173
Objective To identify flavonoid glycosides with quorum sensing inhibitory activity from Epimedium brevicornum and evaluate their bioactivity. Methods The minimum inhibitory concentrations (MICs) of five major flavonoid glycosides (baohuoside, icariin, epimedin A/B/C) and the extract of E. brevicornum were firstly determined. Subsequently, the inhibitory effects on the production of purple pigments in Chromobacterium violaceum CV026 were measured. Additionally, the biofilm formation and chitin quantification of Pseudomonas aeruginosa PAO1 were assessed. Results The extract of E. brevicornum and its primary components exhibited significant quorum sensing inhibitory activity. Particularly, icariin and epimedin C demonstrated superior inhibitory activity. Conclusion E. brevicornum demonstrates the ability to inhibit the quorum sensing system of Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PAO1. Furthermore, icariin and epimedin C (100 μg/ml) show promise for development into novel drugs for quorum sensing inhibitor.
4.The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Ao-Yun LI ; Zhan-Chuang LU ; Li CAO ; Si CHEN ; Hui JIANG ; Chang-Chun CHEN ; Lei CHEN
Progress in Biochemistry and Biophysics 2025;52(4):882-898
Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration, particularly in the fields of neuroscience, optical engineering, and clinical medicine, will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.
5.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
6.Cost-effectiveness of Fractional Flow Reserve Versus Intravascular Ultrasound to Guide Percutaneous Coronary Intervention: Results From the FLAVOUR Study
Doyeon HWANG ; Hea-Lim KIM ; Jane KO ; HyunJin CHOI ; Hanna JEONG ; Sun-ae JANG ; Xinyang HU ; Jeehoon KANG ; Jinlong ZHANG ; Jun JIANG ; Joo-Yong HAHN ; Chang-Wook NAM ; Joon-Hyung DOH ; Bong-Ki LEE ; Weon KIM ; Jinyu HUANG ; Fan JIANG ; Hao ZHOU ; Peng CHEN ; Lijiang TANG ; Wenbing JIANG ; Xiaomin CHEN ; Wenming HE ; Sung Gyun AHN ; Ung KIM ; You-Jeong KI ; Eun-Seok SHIN ; Hyo-Soo KIM ; Seung-Jea TAHK ; JianAn WANG ; Tae-Jin LEE ; Bon-Kwon KOO ;
Korean Circulation Journal 2025;55(1):34-46
Background and Objectives:
The Fractional Flow Reserve and Intravascular UltrasoundGuided Intervention Strategy for Clinical Outcomes in Patients with Intermediate Stenosis (FLAVOUR) trial demonstrated non-inferiority of fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) compared with intravascular ultrasound (IVUS)-guided PCI. We sought to investigate the cost-effectiveness of FFR-guided PCI compared to IVUS-guided PCI in Korea.
Methods:
A 2-part cost-effectiveness model, composed of a short-term decision tree model and a long-term Markov model, was developed for patients who underwent PCI to treat intermediate stenosis (40% to 70% stenosis by visual estimation on coronary angiography).The lifetime healthcare costs and quality-adjusted life-years (QALYs) were estimated from the healthcare system perspective. Transition probabilities were mainly referred from the FLAVOUR trial, and healthcare costs were mainly obtained through analysis of Korean National Health Insurance claims data. Health utilities were mainly obtained from the Seattle Angina Questionnaire responses of FLAVOUR trial participants mapped to EQ-5D.
Results:
From the Korean healthcare system perspective, the base-case analysis showed that FFR-guided PCI was 2,451 U.S. dollar lower in lifetime healthcare costs and 0.178 higher in QALYs compared to IVUS-guided PCI. FFR-guided PCI remained more likely to be cost-effective over a wide range of willingness-to-pay thresholds in the probabilistic sensitivity analysis.
Conclusions
Based on the results from the FLAVOUR trial, FFR-guided PCI is projected to decrease lifetime healthcare costs and increase QALYs compared with IVUS-guided PCI in intermediate coronary lesion, and it is a dominant strategy in Korea.
7.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
8.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
9.Cost-effectiveness of Fractional Flow Reserve Versus Intravascular Ultrasound to Guide Percutaneous Coronary Intervention: Results From the FLAVOUR Study
Doyeon HWANG ; Hea-Lim KIM ; Jane KO ; HyunJin CHOI ; Hanna JEONG ; Sun-ae JANG ; Xinyang HU ; Jeehoon KANG ; Jinlong ZHANG ; Jun JIANG ; Joo-Yong HAHN ; Chang-Wook NAM ; Joon-Hyung DOH ; Bong-Ki LEE ; Weon KIM ; Jinyu HUANG ; Fan JIANG ; Hao ZHOU ; Peng CHEN ; Lijiang TANG ; Wenbing JIANG ; Xiaomin CHEN ; Wenming HE ; Sung Gyun AHN ; Ung KIM ; You-Jeong KI ; Eun-Seok SHIN ; Hyo-Soo KIM ; Seung-Jea TAHK ; JianAn WANG ; Tae-Jin LEE ; Bon-Kwon KOO ;
Korean Circulation Journal 2025;55(1):34-46
Background and Objectives:
The Fractional Flow Reserve and Intravascular UltrasoundGuided Intervention Strategy for Clinical Outcomes in Patients with Intermediate Stenosis (FLAVOUR) trial demonstrated non-inferiority of fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) compared with intravascular ultrasound (IVUS)-guided PCI. We sought to investigate the cost-effectiveness of FFR-guided PCI compared to IVUS-guided PCI in Korea.
Methods:
A 2-part cost-effectiveness model, composed of a short-term decision tree model and a long-term Markov model, was developed for patients who underwent PCI to treat intermediate stenosis (40% to 70% stenosis by visual estimation on coronary angiography).The lifetime healthcare costs and quality-adjusted life-years (QALYs) were estimated from the healthcare system perspective. Transition probabilities were mainly referred from the FLAVOUR trial, and healthcare costs were mainly obtained through analysis of Korean National Health Insurance claims data. Health utilities were mainly obtained from the Seattle Angina Questionnaire responses of FLAVOUR trial participants mapped to EQ-5D.
Results:
From the Korean healthcare system perspective, the base-case analysis showed that FFR-guided PCI was 2,451 U.S. dollar lower in lifetime healthcare costs and 0.178 higher in QALYs compared to IVUS-guided PCI. FFR-guided PCI remained more likely to be cost-effective over a wide range of willingness-to-pay thresholds in the probabilistic sensitivity analysis.
Conclusions
Based on the results from the FLAVOUR trial, FFR-guided PCI is projected to decrease lifetime healthcare costs and increase QALYs compared with IVUS-guided PCI in intermediate coronary lesion, and it is a dominant strategy in Korea.
10.Cost-effectiveness of Fractional Flow Reserve Versus Intravascular Ultrasound to Guide Percutaneous Coronary Intervention: Results From the FLAVOUR Study
Doyeon HWANG ; Hea-Lim KIM ; Jane KO ; HyunJin CHOI ; Hanna JEONG ; Sun-ae JANG ; Xinyang HU ; Jeehoon KANG ; Jinlong ZHANG ; Jun JIANG ; Joo-Yong HAHN ; Chang-Wook NAM ; Joon-Hyung DOH ; Bong-Ki LEE ; Weon KIM ; Jinyu HUANG ; Fan JIANG ; Hao ZHOU ; Peng CHEN ; Lijiang TANG ; Wenbing JIANG ; Xiaomin CHEN ; Wenming HE ; Sung Gyun AHN ; Ung KIM ; You-Jeong KI ; Eun-Seok SHIN ; Hyo-Soo KIM ; Seung-Jea TAHK ; JianAn WANG ; Tae-Jin LEE ; Bon-Kwon KOO ;
Korean Circulation Journal 2025;55(1):34-46
Background and Objectives:
The Fractional Flow Reserve and Intravascular UltrasoundGuided Intervention Strategy for Clinical Outcomes in Patients with Intermediate Stenosis (FLAVOUR) trial demonstrated non-inferiority of fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) compared with intravascular ultrasound (IVUS)-guided PCI. We sought to investigate the cost-effectiveness of FFR-guided PCI compared to IVUS-guided PCI in Korea.
Methods:
A 2-part cost-effectiveness model, composed of a short-term decision tree model and a long-term Markov model, was developed for patients who underwent PCI to treat intermediate stenosis (40% to 70% stenosis by visual estimation on coronary angiography).The lifetime healthcare costs and quality-adjusted life-years (QALYs) were estimated from the healthcare system perspective. Transition probabilities were mainly referred from the FLAVOUR trial, and healthcare costs were mainly obtained through analysis of Korean National Health Insurance claims data. Health utilities were mainly obtained from the Seattle Angina Questionnaire responses of FLAVOUR trial participants mapped to EQ-5D.
Results:
From the Korean healthcare system perspective, the base-case analysis showed that FFR-guided PCI was 2,451 U.S. dollar lower in lifetime healthcare costs and 0.178 higher in QALYs compared to IVUS-guided PCI. FFR-guided PCI remained more likely to be cost-effective over a wide range of willingness-to-pay thresholds in the probabilistic sensitivity analysis.
Conclusions
Based on the results from the FLAVOUR trial, FFR-guided PCI is projected to decrease lifetime healthcare costs and increase QALYs compared with IVUS-guided PCI in intermediate coronary lesion, and it is a dominant strategy in Korea.

Result Analysis
Print
Save
E-mail