1. Expression, purification, and functional verification of recombinant human glycoprotein hormone beta 5/alpha 2 fusion protein in CHO-S cells
Ai-Jun QIAN ; Geng-Miao XIAO ; Zhuang LI ; Yun-Ping MU ; Zi-Jian ZHAO ; Fang-Hong LI ; Zhi-Cheng LIANG
Chinese Pharmacological Bulletin 2024;40(2):390-396
		                        		
		                        			
		                        			 Aim To express and purify recombinant hCGH-CTP fusion protein in high-density suspension culture of Chinese hamster ovary cells (CHO-S), and to verify the lipid accumulation effect of rhCGH-CTP on 3T3-L1 mature adipocytes. Methods The recombinant protein expression vector (pcDNA3. 1-rhCGH-CTP) was constructed, achieved by fusing the human glycoprotein hormone beta 5/alpha 2 cDNA with CTP Linker. The expression plasmid was transiently transfected into the suspended CHO-S to express rhCGH-CTP protein and then purified, and the protein biological activity was verified. Intervention with 3T3-L1 mature adipocyte cells for 24 h was performed to detect the changes of intracellular triglyceride (TG) level. Results Western blot results showed that rhCGH-CTP protein was successfully expressed in CHO-S cells, and the yield was up to 715. 4 mg • L~ . The secreted protein was purified by AKTA pure system with higher purity that was up to 90% as identified by SDS-PAGE. In addition, the intracellular cAMP content of mature adipocytes with high expression of TSHR gene significantly increased after intervention with different concentrations of rhCGH-CTP protein by ELISA kit, indicating that rhCGH-CTP protein had biological activity. Oil red 0 staining showed that compared with the control group, the lipid content of mature adipocytes in the intervention groups with different concentrations of rhCGH-CTP protein significantly decreased (P < 0. 05) . Conclusions The rhCGH-CTP protein has been successfully expressed and purified with biological activity, and effectively reduce TG. This research provides an important theoretical basis for further revealing the physiological role of CGH protein and its potential application in clinical practice. 
		                        		
		                        		
		                        		
		                        	
2.Stability study of umbilical cord mesenchymal stem cells formulation in large-scale production
Wang-long CHU ; Tong-jing LI ; Yan SHANGGUAN ; Fang-tao HE ; Jian-fu WU ; Xiu-ping ZENG ; Tao GUO ; Qing-fang WANG ; Fen ZHANG ; Zhen-zhong ZHONG ; Xiao LIANG ; Jun-yuan HU ; Mu-yun LIU
Acta Pharmaceutica Sinica 2024;59(3):743-750
		                        		
		                        			
		                        			 Umbilical cord mesenchymal stem cells (UC-MSCs) have been widely used in regenerative medicine, but there is limited research on the stability of UC-MSCs formulation during production. This study aims to assess the stability of the cell stock solution and intermediate product throughout the production process, as well as the final product following reconstitution, in order to offer guidance for the manufacturing process and serve as a reference for formulation reconstitution methods. Three batches of cell formulation were produced and stored under low temperature (2-8 ℃) and room temperature (20-26 ℃) during cell stock solution and intermediate product stages. The storage time intervals for cell stock solution were 0, 2, 4, and 6 h, while for intermediate products, the intervals were 0, 1, 2, and 3 h. The evaluation items included visual inspection, viable cell concentration, cell viability, cell surface markers, lymphocyte proliferation inhibition rate, and sterility. Additionally, dilution and culture stability studies were performed after reconstitution of the cell product. The reconstitution diluents included 0.9% sodium chloride injection, 0.9% sodium chloride injection + 1% human serum albumin, and 0.9% sodium chloride injection + 2% human serum albumin, with dilution ratios of 10-fold and 40-fold. The storage time intervals after dilution were 0, 1, 2, 3, and 4 h. The reconstitution culture media included DMEM medium, DMEM + 2% platelet lysate, 0.9% sodium chloride injection, and 0.9% sodium chloride injection + 1% human serum albumin, and the culture duration was 24 h. The evaluation items were viable cell concentration and cell viability. The results showed that the cell stock solution remained stable for up to 6 h under both low temperature (2-8 ℃) and room temperature (20-26 ℃) conditions, while the intermediate product remained stable for up to 3 h under the same conditions. After formulation reconstitution, using sodium chloride injection diluted with 1% or 2% human serum albumin maintained a viability of over 80% within 4 h. It was observed that different dilution factors had an impact on cell viability. After formulation reconstitution, cultivation in medium with 2% platelet lysate resulted in a cell viability of over 80% after 24 h. In conclusion, the stability of cell stock solution within 6 h and intermediate product within 3 h meets the requirements. The addition of 1% or 2% human serum albumin in the reconstitution diluent can better protect the post-reconstitution cell viability. 
		                        		
		                        		
		                        		
		                        	
3.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
		                        		
		                        			
		                        			Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
		                        		
		                        		
		                        		
		                        	
4.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
		                        		
		                        			
		                        			Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
		                        		
		                        		
		                        		
		                        	
5.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
		                        		
		                        			
		                        			Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
		                        		
		                        		
		                        		
		                        	
6.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
		                        		
		                        			
		                        			Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
		                        		
		                        		
		                        		
		                        	
7.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
		                        		
		                        			
		                        			Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
		                        		
		                        		
		                        		
		                        	
8.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
		                        		
		                        			
		                        			Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
		                        		
		                        		
		                        		
		                        	
9.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
		                        		
		                        			
		                        			Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
		                        		
		                        		
		                        		
		                        	
10.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
		                        		
		                        			
		                        			Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail