1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Clinical characteristics and prognosis of male dermatomyositis patients with positive anti-melanoma differentiation associated gene 5 antibody
Yitian SHI ; Fenghong YUAN ; Ting LIU ; Wenfeng TAN ; Ju LI ; Min WU ; Zhanyun DA ; Hua WEI ; Lei ZHOU ; Songlou YIN ; Jian WU ; Yan LU ; Dinglei SU ; Zhichun LIU ; Lin LIU ; Longxin MA ; Xiaoyan XU ; Yinshan ZANG ; Huijie LIU ; Tianli REN
Chinese Journal of Rheumatology 2024;28(1):44-49
Objective:To investigate the clinical features and prognosis of male with anti-melanoma differentiation-associated gene 5 (MDA5) autoantibody.Methods:The clinical data of 246 patients with DM and anti-MDA5 autoantibodies hospitalized by Jiangsu Myositis Cooperation Group from 2017 to 2020 were collected and retrospectively analyzed. Chi-square test was performed to compared between counting data groups; Quantitative data were expressed by M ( Q1, Q3), and rank sum test was used for comparison between groups; Single factor survival analysis was performed by Kaplan-Meier method and Log rank test; Cox regression analysis were used for multivariate survival analysis. Results:①The male group had a higher proportion of rash at the sun exposure area [67.1%(47/70) vs 52.8%(93/176), χ2=4.18, P=0.041] and V-sign [50.0%(35/70) vs 30.7%(54/176), χ2=8.09, P=0.004] than the female group. The male group had higher levels of creatine kinase [112(18, 981)U/L vs 57 (13.6, 1 433)U/L, Z=-3.50, P<0.001] and ferritin [1 500 (166, 32 716)ng/ml vs 569 (18, 14 839)ng/ml, Z=-5.85, P<0.001] than the female group. The proportion of ILD [40.0%(28/70) vs 59.7%(105/176), χ2=7.82, P=0.020] patients and the red blood cell sedimentation rate[31.0(4.0, 101.5)mm/1 h vs 43.4(5.0, 126.5)mm/1 h, Z=-2.22, P=0.026] in the male group was lower than that of the female group, but the proportion of rapidly progressive interstitial lung disease (PR-ILD) [47.1%(33/70) vs 31.3%(55/176), χ2=5.51, P=0.019] was higher than that of the female group. ②In male patients with positive anti-MDA5 antibodies,the death group had a shorter course of disease[1.0(1.0, 3.0) month vs 2.5(0.5,84) month, Z=-3.07, P=0.002], the incidence of arthritis [16.7%(4/24) vs 42.2%(19/45), χ2=4.60, P=0.032] were low than those in survival group,while aspartate aminotransferase (AST)[64(22.1, 565)U/L vs 51(14,601)U/L, Z=-2.42, P=0.016], lactate dehydrogenase (LDH) [485(24,1 464)U/L vs 352(170, 1 213)U/L, Z=-3.38, P=0.001], C-reactive protein (CRP) [11.6(2.9, 61.7) mg/L vs 4.95(0.6, 86.4) mg/L, Z=-1.96, P=0.050], and ferritin levels [2 000(681, 7 676) vs 1 125 (166, 32 716)ng/ml, Z=-3.18, P=0.001] were higher than those in the survival group, and RP-ILD [95.8%(23/24) vs 22.2%(10/45), χ2=33.99, P<0.001] occurred at a significantly higher rate. ③Cox regression analysis indicated that the course of disease LDH level, and RP-ILD were related factors for the prognosis of male anti-MDA5 antibodies [ HR (95% CI)=0.203(0.077, 0.534), P=0.001; HR (95% CI)=1.002(1.001, 1.004), P=0.003; HR (95% CI)=95.674 (10.872, 841.904), P<0.001]. Conclusion:The clinical manifestations of male anti-MDA5 antibody-positive patients are different from those of female. The incidence of ILD is low, but the proportion of PR-ILD is high. The course of disease, serum LDH level, and RP-ILD are prognostic factors of male anti-MDA5 antibody-positive patients.
7.Protective effects of corosolic acid on doxorubicin-induced cardiotoxicity in H9c2 cardiomyocytes
Xiang JIA ; Wu-Bin HE ; Qiu-Shi YANG ; Jian-Hua HUANG
Chinese Traditional Patent Medicine 2024;46(2):451-457
AIM To investigate the protective effects and the mechanism of corosolic acid on doxorubicin-induced cardiotoxicity in H9c2 cardiomyocytes.METHODS To screen and determine the effective concentration of corosolic acid,the injury models of H9c2 cardiomyocytes established by 1 μmol/L doxorubicin were exposed to 24 h different concentrations of corosolic acid,followed by detections of their cell activity by MTT method;their cell apoptosis morphology by Hoechst 33342 staining method;their cell apoptosis rate by Annexin V-FITC/PI double staining method;their intracellular ROS level by DCFH-DA probe;their intracellular iron level by iron ion colorimetry;and their protein expressions of Bax,Bcl-2,cleaved-caspase3,Nrf2,GPX4 and Ptgs2 by Western blot.RESULTS Upon the doxorubicin-induced injury models of H9c2 cardiomyocytes,corosolic acid improved their viability and survival rate(P<0.05),decreased their levels of ROS and Fe2+ and the apoptosis rate(P<0.05),up-regulated the protein expressions of Bcl-2,Nrf2 and GPX4(P<0.05),and down-regulated the protein expressions of Bax,cleved-caspase 3 and Ptgs2(P<0.05).CONCLUSION Corosolic acid can inhibit the ROS level and apoptosis of doxorubicin-induced injury models of H9c2 cardiomyocytes,and the iron death as well via activating Nrf2/GPX4 pathway.
8.TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children
Xi MING ; Liqun WU ; Ziwei WANG ; Bo WANG ; Jialin ZHENG ; Jingwei HUO ; Mei HAN ; Xiaochun FENG ; Baoqing ZHANG ; Xia ZHAO ; Mengqing WANG ; Zheng XUE ; Ke CHANG ; Youpeng WANG ; Yanhong QIN ; Bin YUAN ; Hua CHEN ; Lining WANG ; Xianqing REN ; Hua XU ; Liping SUN ; Zhenqi WU ; Yun ZHAO ; Xinmin LI ; Min LI ; Jian CHEN ; Junhong WANG ; Yonghong JIANG ; Yongbin YAN ; Hengmiao GAO ; Hongmin FU ; Yongkun HUANG ; Jinghui YANG ; Zhu CHEN ; Lei XIONG
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(7):722-732
Following the principles of evidence-based medicine,in accordance with the structure and drafting rules of standardized documents,based on literature research,according to the characteristics of chronic cough in children and issues that need to form a consensus,the TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children was formulated based on the Delphi method,expert discussion meetings,and public solicitation of opinions.The guideline includes scope of application,terms and definitions,eti-ology and diagnosis,auxiliary examination,treatment,prevention and care.The aim is to clarify the optimal treatment plan of Chinese medicine in the diagnosis and treatment of this disease,and to provide guidance for improving the clinical diagnosis and treatment of chronic cough in children with Chinese medicine.
9.Effect of Portable Oto-endoscopy System in Clinical Teaching of Otorhinolaryngology
Bin WANG ; Wei LYU ; Zhiqiang GAO ; Hua YANG ; Keli CAO ; Guodong FENG ; Haiyan WU ; Yingying SHANG ; Xingming CHEN ; Jian WANG ; Xu TIAN ; Weiqing WANG
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1475-1479
To explore the value of portable oto-endoscopy system in clinical teaching of otolaryngology residents. The postgraduate students serving as resident doctors in the Department of Otolaryngology of Peking Union Medical College Hospital from February to March 2022 and from February to March 2023 were selected as the research objects. Random number table method was used to divide them into experimental group and control group. The control group was first taught by theoretical explanation + electrooto-endoscopy system, and the experimental group was first taught by theoretical explanation + portable oto-endoscopy system. After one month, the two groups interchanged their teaching methodologies. The results of theoretical assessment, self-evaluation at the end of the first month of clinical learning and satisfaction with teaching effectiveness at the end of two months of clinical learning were compared between the two groups. A total of 36 residents were included in this study, with 18 in each group. After one month of clinical study, the theoretical test scores of the experimental group were significantly higher than those of the control group[(93.17±4.16) points The portable oto-endoscopy system can display the anatomy and diseases of otolaryngology more vividly and intuitively in the clinical teaching of otolaryngology, facilitate the management of clinical data, increase the learning interest of residents, fully mobilize the image thinking of medical students, and improve the post competence of residents more efficiently.
10.Incidence of postoperative complications in Chinese patients with gastric or colorectal cancer based on a national, multicenter, prospective, cohort study
Shuqin ZHANG ; Zhouqiao WU ; Bowen HUO ; Huining XU ; Kang ZHAO ; Changqing JING ; Fenglin LIU ; Jiang YU ; Zhengrong LI ; Jian ZHANG ; Lu ZANG ; Hankun HAO ; Chaohui ZHENG ; Yong LI ; Lin FAN ; Hua HUANG ; Pin LIANG ; Bin WU ; Jiaming ZHU ; Zhaojian NIU ; Linghua ZHU ; Wu SONG ; Jun YOU ; Su YAN ; Ziyu LI
Chinese Journal of Gastrointestinal Surgery 2024;27(3):247-260
Objective:To investigate the incidence of postoperative complications in Chinese patients with gastric or colorectal cancer, and to evaluate the risk factors for postoperative complications.Methods:This was a national, multicenter, prospective, registry-based, cohort study of data obtained from the database of the Prevalence of Abdominal Complications After Gastro- enterological Surgery (PACAGE) study sponsored by the China Gastrointestinal Cancer Surgical Union. The PACAGE database prospectively collected general demographic characteristics, protocols for perioperative treatment, and variables associated with postoperative complications in patients treated for gastric or colorectal cancer in 20 medical centers from December 2018 to December 2020. The patients were grouped according to the presence or absence of postoperative complications. Postoperative complications were categorized and graded in accordance with the expert consensus on postoperative complications in gastrointestinal oncology surgery and Clavien-Dindo grading criteria. The incidence of postoperative complications of different grades are presented as bar charts. Independent risk factors for occurrence of postoperative complications were identified by multifactorial unconditional logistic regression.Results:The study cohort comprised 3926 patients with gastric or colorectal cancer, 657 (16.7%) of whom had a total of 876 postoperative complications. Serious complications (Grade III and above) occurred in 4.0% of patients (156/3926). The rate of Grade V complications was 0.2% (7/3926). The cohort included 2271 patients with gastric cancer with a postoperative complication rate of 18.1% (412/2271) and serious complication rate of 4.7% (106/2271); and 1655 with colorectal cancer, with a postoperative complication rate of 14.8% (245/1655) and serious complication rate of 3.0% (50/1655). The incidences of anastomotic leakage in patients with gastric and colorectal cancer were 3.3% (74/2271) and 3.4% (56/1655), respectively. Abdominal infection was the most frequently occurring complication, accounting for 28.7% (164/572) and 39.5% (120/304) of postoperative complications in patients with gastric and colorectal cancer, respectively. The most frequently occurring grade of postoperative complication was Grade II, accounting for 65.4% (374/572) and 56.6% (172/304) of complications in patients with gastric and colorectal cancers, respectively. Multifactorial analysis identified (1) the following independent risk factors for postoperative complications in patients in the gastric cancer group: preoperative comorbidities (OR=2.54, 95%CI: 1.51-4.28, P<0.001), neoadjuvant therapy (OR=1.42, 95%CI:1.06-1.89, P=0.020), high American Society of Anesthesiologists (ASA) scores (ASA score 2 points:OR=1.60, 95% CI: 1.23-2.07, P<0.001, ASA score ≥3 points:OR=0.43, 95% CI: 0.25-0.73, P=0.002), operative time >180 minutes (OR=1.81, 95% CI: 1.42-2.31, P<0.001), intraoperative bleeding >50 mL (OR=1.29,95%CI: 1.01-1.63, P=0.038), and distal gastrectomy compared with total gastrectomy (OR=0.65,95%CI: 0.51-0.83, P<0.001); and (2) the following independent risk factors for postoperative complications in patients in the colorectal cancer group: female (OR=0.60, 95%CI: 0.44-0.80, P<0.001), preoperative comorbidities (OR=2.73, 95%CI: 1.25-5.99, P=0.030), neoadjuvant therapy (OR=1.83, 95%CI:1.23-2.72, P=0.008), laparoscopic surgery (OR=0.47, 95%CI: 0.30-0.72, P=0.022), and abdominoperineal resection compared with low anterior resection (OR=2.74, 95%CI: 1.71-4.41, P<0.001). Conclusion:Postoperative complications associated with various types of infection were the most frequent complications in patients with gastric or colorectal cancer. Although the risk factors for postoperative complications differed between patients with gastric cancer and those with colorectal cancer, the presence of preoperative comorbidities, administration of neoadjuvant therapy, and extent of surgical resection, were the commonest factors associated with postoperative complications in patients of both categories.

Result Analysis
Print
Save
E-mail