1.Comprehensive evaluation of benign and malignant pulmonary nodules using combined biological testing and imaging assessment in 1 017 patients: A retrospective cohort study
Lei ZHANG ; Zihao LI ; Nan LI ; Jun CHENG ; Feng ZHANG ; Pinghui XIA ; Wang LÜ ; ; Jian HU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):60-66
Objective By combining biological detection and imaging evaluation, a clinical prediction model is constructed based on a large cohort to improve the accuracy of distinguishing between benign and malignant pulmonary nodules. Methods A retrospective analysis was conducted on the clinical data of the 32 627 patients with pulmonary nodules who underwent chest CT and testing for 7 types of lung cancer-related serum autoantibodies (7-AABs) at our hospital from January 2020 to April 2024. The univariate and multivariate logistic regression models were performed to screen independent risk factors for benign and malignant pulmonary nodules, based on which a nomogram model was established. The performance of the model was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Results A total of 1 017 patients with pulmonary nodules were included in the study. The training set consisted of 712 patients, including 291 males and 421 females, with a mean age of (58±12) years. The validation set included 305 patients, comprising 129 males and 176 females, with a mean age of (58±13) years. Univariate ROC curve analysis indicated that the combination of CT and 7-AABs testing achieved the highest area under the curve (AUC) value (0.794), surpassing the diagnostic efficacy of CT alone (AUC=0.667) or 7-AABs alone (AUC=0.514). Multivariate logistic regression analysis showed that radiological nodule diameter, nodule nature, and CT combined with 7-AABs detection were independent predictors, which were used to construct a nomogram prediction model. The AUC values for this model were 0.826 and 0.862 in the training and validation sets, respectively, demonstrating excellent performance in DCA. Conclusion The combination of 7-AABs with CT significantly enhances the accuracy of distinguishing between benign and malignant pulmonary nodules. The developed predictive model provides strong support for clinical decision-making and contributes to achieving precise diagnosis and treatment of pulmonary nodules.
2.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Characteristics of Basal Sex Hormone Levels and Anti-müllerian Hormone Levels in 1221 Women of Different Ages:A Retrospective Study on the Law of Women Reproductive Aging in the "Seven-year Period" Theory
Wanshi LIANG ; Yiru LIAO ; Jinghan FU ; Luodan HU ; Hongyan YANG ; Jian LIU ; Fangping CHENG ; Guangning NIE
Journal of Traditional Chinese Medicine 2024;65(13):1369-1374
ObjectiveTo explore the law of women reproductive aging based on theory of "seven-year period" in traditional Chinese medicine(TCM) through analyzing the characteristics of basic sex hormone levels and anti-müllerian hormone levels in women of different ages. MethodsThe data of female who visited Guangdong Provincial Hospital of Traditional Chinese Medicine from January 2018 to December 2022 and accepted basic hormone and anti-müllerian hormone determination were collected retrospectively. According to the age of subjects, they were divided into the "1
7.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
8.Classification and Application of Surface-enhanced Raman Spectroscopy Substrates
Shao-Yun CHEN ; Xing-Ying ZHANG ; Ben LIU ; Zhong-Cai WANG ; Cheng-Long HU ; Jian CHEN
Chinese Journal of Analytical Chemistry 2024;52(7):910-924
Surface-enhanced Raman scattering(SERS)can detect molecules adsorbed on the surface of noble metals in monolayers and sub-monolayers,and provide structural information of molecules with high sensitivity,high accuracy,and fingerprint recognition and non-destructive detection.The SERS technology has been widely used in single-molecule detection,chemical reaction and engineering,biomedicine,nanomaterials and environmental detection,and so on.The spectral sensitivity and signal reproducibility of SERS are closely related to the type of noble metal substrate.In this paper,based on the mechanism of electromagnetic field enhancement(EM)and chemical enhancement(CM)of SERS,the affecting factors of SERS enhancement were analyzed,including the micro-nanostructure of SERS substrate,particle size,particle spacing,etc,the research and application of SERS substrate in recent years were summarized and reviewed,and the development direction of metal substrate,data analysis and application direction of SERS technology in the future were prospected.
9.Expert consensus on difficulty assessment of endodontic therapy
Huang DINGMING ; Wang XIAOYAN ; Liang JINGPING ; Ling JUNQI ; Bian ZHUAN ; Yu QING ; Hou BENXIANG ; Chen XINMEI ; Li JIYAO ; Ye LING ; Cheng LEI ; Xu XIN ; Hu TAO ; Wu HONGKUN ; Guo BIN ; Su QIN ; Chen ZHI ; Qiu LIHONG ; Chen WENXIA ; Wei XI ; Huang ZHENGWEI ; Yu JINHUA ; Lin ZHENGMEI ; Zhang QI ; Yang DEQIN ; Zhao JIN ; Pan SHUANG ; Yang JIAN ; Wu JIAYUAN ; Pan YIHUAI ; Xie XIAOLI ; Deng SHULI ; Huang XIAOJING ; Zhang LAN ; Yue LIN ; Zhou XUEDONG
International Journal of Oral Science 2024;16(1):15-25
Endodontic diseases are a kind of chronic infectious oral disease.Common endodontic treatment concepts are based on the removal of inflamed or necrotic pulp tissue and the replacement by gutta-percha.However,it is very essential for endodontic treatment to debride the root canal system and prevent the root canal system from bacterial reinfection after root canal therapy(RCT).Recent research,encompassing bacterial etiology and advanced imaging techniques,contributes to our understanding of the root canal system's anatomy intricacies and the technique sensitivity of RCT.Success in RCT hinges on factors like patients,infection severity,root canal anatomy,and treatment techniques.Therefore,improving disease management is a key issue to combat endodontic diseases and cure periapical lesions.The clinical difficulty assessment system of RCT is established based on patient conditions,tooth conditions,root canal configuration,and root canal needing retreatment,and emphasizes pre-treatment risk assessment for optimal outcomes.The findings suggest that the presence of risk factors may correlate with the challenge of achieving the high standard required for RCT.These insights contribute not only to improve education but also aid practitioners in treatment planning and referral decision-making within the field of endodontics.
10.Research Progress on Dendrobii Officinalis Caulis as Medicinal and Edible Traditional Chinese Medicine
Yang HU ; Mian ZHAO ; Yuxuan QIU ; Debao YE ; Yangqing LIU ; Chaofeng ZHANG ; Haibo WANG ; Jian-Ming CHENG
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(1):94-108
Tiepishihu(Dendrobii officinalis Caulis)is a medicinal and food source herbal medicine with the effect of benefiting stomach and promoting fluid,nourishing Yin and clearing heat.It has rich chemical components and pharmacological activities,with anti-inflammatory,anti-bacterial,anti-oxidation,anti-tumor,immunomodulatory,blood press regulation,hypoglycemic effects.It is not only used as medicinal food and health care products,but also widely used in medicine,such as Shihu Yeguang Wan,Compound fresh dendrobium granules and other drugs,with high medicinal and economic value.This paper summarized the resource distribution,chemical composition,pharmacological activities,and medicine and food of Dendrobii officinalis Caulis,and analyzed its application status,laying a theoretical foundation for the sustainable development,medicinal and food homologous development and comprehensive utilization of Dendrobii officinalis Caulis.

Result Analysis
Print
Save
E-mail