1.Clinical evaluation of anlotinib in third-line treatment for advanced non-small cell lung cancer based on real-world data
Jian WU ; Peipei LI ; Yongfu ZHU ; Dongwei ZHANG ; Yongzhong WANG ; Hao CHEN
China Pharmacy 2025;36(12):1488-1494
		                        		
		                        			
		                        			OBJECTIVE To evaluate the clinical value of anlotinib in third-line treatment for patients with advanced non-small cell lung cancer (NSCLC) through real-world data. METHODS Clinical data of patients with advanced NSCLC who received treatment at the First Affiliated Hospital of Anhui University of Chinese Medicine from February 2021 to December 2024 were retrospectively collected. They were divided into anlotinib group (27 cases, receiving anlotinib therapy) and immunotherapy group (22 cases, receiving immunotherapy agents alone or in combination with chemotherapy drugs) according to treatment regimens. The progression-free survival (PFS) and overall survival (OS) of patients were compared between the two groups, and the occurrence of adverse drug reactions during the treatment period was recorded. Using a partitioned survival model, an economic evaluation of the two treatment regimens was conducted with a cost-utility analysis approach from the perspective of the healthcare system. RESULTS The median PFS and OS of patients in the anlotinib group were 5.93 months and 11.27 months, respectively; the median PFS and OS of patients in the immunotherapy group were 5.33 months and 9.77 months, respectively; the difference was not statistically significant (P>0.05). There was no statistical difference in the total incidence of adverse drug reactions and grade 3-4 serious adverse drug reactions between the two groups (P>0.05). Compared with the immunotherapy group, the incremental cost-effectiveness ratio of the anlotinib group was 1 806 724.60 yuan/quality-adjusted life year (QALY), which was significantly higher than three times China’s per capita gross domestic product in 2024 (287 247 yuan/QALY). CONCLUSIONS For third-line treatment of advanced NSCLC patients, the efficacy of anlotinib is no worse than that of immunotherapy alone or in combination with chemotherapy drugs, and the safety of the two groups is comparable. However, anlotinib is not cost-effective.
		                        		
		                        		
		                        		
		                        	
2.Incremental effectiveness of two-dose of mumps-containing vaccine in chidren
Chinese Journal of School Health 2025;46(6):883-887
		                        		
		                        			Objective:
		                        			To evaluate the incremental vaccine effectiveness (VE) of two dose of the mumps containing vaccine (MuCV) in chidren, so as to provide a basis for optimizing mumps immunization strategies.
		                        		
		                        			Methods:
		                        			A 1∶2 frequency matched case-control study was conducted by using reported mumps cases in childcare centers or schools from Lu an, Hefei, Ma anshan and Huainan cities of Anhui Province from September 1, 2023 to June 30, 2024, as a case group(383 cases). And healthy children in the same classroom were selected as a control group(766 cases). The MuCV immunization histories of participants were collected to estimate the incremental VE of the second dose of MuCV against mumps. Group comparisons were performed using the  Chi square test or  t-test. For matched case-control pairs, the Cox regression model was employed to calculate the odds ratio (OR) with 95% confidence interval (CI) for two dose MuCV vaccination and to estimate the incremental vaccine effectiveness (VE).
		                        		
		                        			Results:
		                        			There were no statistically significant differences between the case and control groups regarding gender, age, dosage of MuCV vaccination and the time interval since the last dose vaccination( χ 2/t=0.05, 0.20, 0.94, -0.02, P >0.05). The proportions of the case and control groups vaccinated with two doses of MuCV were 26.63% and 29.37%, respectively, and the overall incremental VE of the second dose of MuCV was 40.73% (95% CI=3.03%-63.77%, P <0.05). Subgroup analyses revealed that the incremental VE for children with a period of ≥1 year between the two doses of MuCV was 54.13% (95% CI=1.90%-78.56%, P <0.05), while for children with a period of <1 year, it was 30.63% (95% CI=-28.59%-62.58%, P >0.05). The incremental VE of the second dose of MuCV was 30.36% (95% CI=-25.95%-61.50%, P >0.05) in kindergarten children and 66.73% (95% CI=14.92%-86.99%, P <0.05) in elementary and secondary school students. The incremental VE was 28.78% (95% CI=-27.46%-60.21%, P >0.05) within five years of the last dose of MuCV vaccination and 66.07% (95% CI=-41.56%-91.87%, P >0.05) for vaccinations administered beyond five years.
		                        		
		                        			Conclusions
		                        			The second dose of MuCV may offer additional protection for children; however, extending the interval between two dose of MuCV (<1 year) has shown limited incremental protective effects. Therefore, it is crucial to consider optimizing current immunization strategies for mumps.
		                        		
		                        		
		                        		
		                        	
3.Seroprevalence and influencing factors of low-level neutralizing antibodies against SARS-CoV-2 in community residents
Shiying YUAN ; Jingyi ZHANG ; Huanyu WU ; Weibing WANG ; Genming ZHAO ; Xiao YU ; Xiaoying MA ; Min CHEN ; Xiaodong SUN ; Zhuoying HUANG ; Zhonghui MA ; Yaxu ZHENG ; Jian CHEN
Shanghai Journal of Preventive Medicine 2025;37(5):403-409
		                        		
		                        			
		                        			ObjectiveTo understand the seropositivity of neutralizing antibodies (NAb) and low-level NAb against SARS-CoV-2 infection in the community residents, and to explore the impact of COVID-19 vaccination and SARS-CoV-2 infection on the levels of NAb in human serum. MethodsOn the ground of surveillance cohort for acute infectious diseases in community populations in Shanghai, a proportional stratified sampling method was used to enroll the subjects at a 20% proportion for each age group (0‒14, 15‒24, 25‒59, and ≥60 years old). Blood samples collection and serum SARS-CoV-2 NAb concentration testing were conducted from March to April 2023. Low-level NAb were defined as below the 25th percentile of NAb. ResultsA total of 2 230 participants were included, the positive rate of NAb was 97.58%, and the proportion of low-level NAb was 25.02% (558/2 230). Multivariate logistic regression analysis indicated that age, infection history and vaccination status were correlated with low-level NAb (all P<0.05). Individuals aged 60 years and above had the highest risk of low-level NAb. There was a statistically significant interaction between booster vaccination and one single infection (aOR=0.38, 95%CI: 0.19‒0.77). Compared to individuals without vaccination, among individuals infected with SARS-CoV-2 once, both primary immunization (aOR=0.23, 95%CI: 0.16‒0.35) and booster immunization (aOR=0.12, 95%CI: 0.08‒0.17) significantly reduced the risk of low-level NAb; among individuals without infections, only booster immunization (aOR=0.28, 95%CI: 0.14‒0.52) showed a negative correlation with the risk of low-level NAb. ConclusionsThe population aged 60 and above had the highest risk of low-level NAb. Regardless of infection history, a booster immunization could reduce the risk of low-level NAb. It is recommended that eligible individuals , especially the elderly, should get vaccinated in a timely manner to exert the protective role of NAb. 
		                        		
		                        		
		                        		
		                        	
4.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
		                        		
		                        			
		                        			The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines. 
		                        		
		                        		
		                        		
		                        	
5.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
		                        		
		                        			
		                        			With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
		                        		
		                        		
		                        		
		                        	
6.Structure, content and data standardization of rehabilitation medical records
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Shiyong WU ; Yaoguang ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Jian YANG ; Na AN ; Yuanjun DONG ; Xiaojia XIN ; Xiangxia REN ; Ye LIU ; Yifan TIAN
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):21-32
		                        		
		                        			
		                        			ObjectiveTo elucidate the critical role of rehabilitation medical records (including electronic records) in rehabilitation medicine's clinical practice and management, comprehensively analyzed the structure, core content and data standards of rehabilitation medical records, to develop a standardized medical record data architecture and core dataset suitable for rehabilitation medicine and to explore the application of rehabilitation data in performance evaluation and payment. MethodsBased on the regulatory documents Basic Specifications for Medical Record Writing and Basic Specifications for Electronic Medical Records (Trial) issued by National Health Commission of China, and referencing the World Health Organization (WHO) Family of International Classifications (WHO-FICs) classifications, International Classification of Diseases (ICD-10/ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), this study constructed the data architecture, core content and data standards for rehabilitation medical records. Furthermore, it explored the application of rehabilitation record summary sheets (home page) data in rehabilitation medical statistics and payment methods, including Diagnosis-related Groups (DRG), Diagnosis-Intervention Packet (DIP) and Case Mix Index. ResultsThis study proposed a systematic standard framework for rehabilitation medical records, covering key components such as patient demographics, rehabilitation diagnosis, functional assessment, rehabilitation treatment prescriptions, progress evaluations and discharge summaries. The research analyzed the systematic application methods and data standards of ICD-10/ICD-11, ICF and ICHI Beta-3 in the fields of medical record terminology, coding and assessment. Constructing a standardized data structure and data standards for rehabilitation medical records can significantly improve the quality of data reporting based on the medical record summary sheet, thereby enhancing the quality control of rehabilitation services, effectively supporting the optimization of rehabilitation medical insurance payment mechanisms, and contributing to the establishment of rehabilitation medical performance evaluation and payment based on DRG and DIP. ConclusionStructured rehabilitation records and data standardization are crucial tools for quality control in rehabilitation. Systematically applying the three reference classifications of the WHO-FICs, and aligning with national medical record and electronic health record specifications, facilitate the development of a standardized rehabilitation record architecture and core dataset. Standardizing rehabilitation care pathways based on the ICF methodology, and developing ICF- and ICD-11-based rehabilitation assessment tools, auxiliary diagnostic and therapeutic systems, and supporting terminology and coding systems, can effectively enhance the quality of rehabilitation records and enable interoperability and sharing of rehabilitation data with other medical data, ultimately improving the quality and safety of rehabilitation services. 
		                        		
		                        		
		                        		
		                        	
7.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
8.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
		                        		
		                        			 Objective:
		                        			Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic. 
		                        		
		                        			Methods:
		                        			Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models. 
		                        		
		                        			Conclusion
		                        			Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.	 
		                        		
		                        		
		                        		
		                        	
9.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
10.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
		                        		
		                        			 Objective:
		                        			Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic. 
		                        		
		                        			Methods:
		                        			Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models. 
		                        		
		                        			Conclusion
		                        			Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.	 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail