1.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
2.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
3.Successful treatment of infantile hepatic hemangioma with high-output heart failure:report of 3 cases and literature review
Jian YANG ; Xiaoke DAI ; Mingman ZHANG ; Qiang XIONG
Journal of Army Medical University 2024;46(22):2569-2575
Objective To summarize the clinical characteristics,treatment regimen and clinical outcomes of infantile hepatic hemangioma(IHH)with high-output heart failure(HHF).Methods A retrospective analysis was conducted on 3 IHH infants with concomitant HHF admitted to the Children's Hospital of Chongqing Medical University during October 2020 and October 2023.The characteristics,treatment plans and efficacy were analyzed in the 3 cases.CNKI,WANFANG DATA,Chinese Medical Association Journal Full-text Database,and PubMed databases were retrieved to search domestic and foreign literature concerning the diseases,and the enrolled cases were analyzed and reviewed.Results Among the 3 infants,they were 1 male and 2 females,and aged 1 d,19 d and 80 d,respectively.The main clinical symptoms were dyspnea and respiratory distress.All 3 patients rapidly progressed to respiratory failure,pulmonary hypertension and heart failure after admission.Diffuse IHH was diagnosed in 2 cases and focal IHH in 1 case.One case of diffuse IHH underwent percutaneous hepatic artery embolization,and the cardiopulmonary function recovered on the day of surgery,and the ventilator was removed.In the other 2 cases,propranolol combined with steroid medication was used,and the estimated right ventricular systolic pressure and E wave to A wave mitral flow ratio(E/A)were the most sensitive indicators in echocardiographic monitoring.There were 24 cases included in literature review,with 4 cases of treatment failure and death,3 cases of remission,and 17 cases of complete recovery.Conclusion Propranolol combined with steroid medication and percutaneous hepatic artery embolization are effective in treating IHH complicated with HHF.Right ventricular systolic pressure and E/A during drug therapy might be early sensitive marker for the early evaluation of potential therapeutic effects of drugs.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.
6.Etiological analysis and epidemiological significance of plague in Qinghai, 1980-2011
Jian-guo YANG ; Juan JIN ; Pei-song YOU ; Hui XIE ; Cun-xiang LI ; Jian HE ; Lin-de MA ; Hao-ming XIONG ; qiang ZHANG ; Fu-zhang TIAN ; Rui-xia DAI
China Tropical Medicine 2022;22(12):1109-
Abstract: Objective To analyze the pathogenic characteristics and epidemiological significance of human plague related strains in Qinghai Province in recent 30 years, so as to provide scientific basis for on-the-spot disposal and prevention and control measures of plague outbreak in Qinghai Province. Methods A total of 35 strains of Yersinia pestis isolated from 29 typical human plague outbreaks in Qinghai Province from 1980 to 2011 were selected and studied by biochemical fermentation experiments. Virulence factors detection of Fraction 1 antigen (Fra1), virulence antigen (VW), pigmentation (Pgm) and Yersinia pestis Ⅰ (PstⅠ), determinants and genotyping of differential regions (DFRs) were used to study the pathogenic characteristics. At the same time, according to the epidemic situation of human and animal plague in Qinghai Province in recent years, the current situation of plague prevention and control and epidemic characteristics were analyzed. Results The biotypes of 35 strains of Yersinia pestis were classical, and the biotypes of 29 strains (82.86%) were of Qinghai-Tibet Plateau type, mainly distributed in southern Qinghai and around lake areas, 2 strains (5.71%) belonged to Qilian Mountains type, mainly distributed in Qilian mountains, and 6 genotypes were identified by DFR. Among them, 16 were type 5, 12 were type 8, 2 were type 10, 1 was type 36, 3 were type 30 and 1 was type 1b, the strains of type 5 and 1b were mainly distributed around the lake and the southern foot of Qilian Mountains, while the strains of type 8, 10, 36 and 30 were mainly distributed in the southern part of Qinghai. Conclusions The pathogen of Yersinia pestis in Qinghai Plateau has complex biochemical types, the epidemic situation among animals is continuous year after year, the situation of prevention and control is serious, the occurrence and prevalence of plague seriously endanger people's health and social development, so it is necessary to do a solid job in the prevention and control of plague to ensure the safety of people's lives.
7.Clinical expert consensus on platelet-rich plasma treatment for lateral epicondylitis (2022 version)
Jian LI ; Guoqing CUI ; Chengqi HE ; Shiyi CHEN ; Boxu CHEN ; Hong CHEN ; Xuesong DAI ; Hongchen HE ; Hui KANG ; Tieshan LI ; Guoping LI ; Jiuzhou LU ; Chao MA ; Xin TANG ; Jun TAO ; Hong WANG ; Ming XIANG ; Dan XING ; Yiquan XIONG ; Qingyun XUE ; Rui YANG ; Tin YUAN ; Qiang ZHANG ; Jingbin ZHOU ; Weihong ZHU ; Yan XIONG ; Yan LIU
Chinese Journal of Trauma 2022;38(8):673-680
Lateral epicondylitis is a common clinical disease with characteristics of lateral elbow pain, insidious onset and easy recurrence, which can cause forearm pain and decreased wrist strength, seriously affecting patients′ daily life and work. Although there are various treatment methods for lateral epicondylitis with different effects, standard treatments are still lacking nowadays. Platelet-rich plasma (PRP) has good effects on bone and tendon repair, and is now widely used in the treatment of lateral epicondylitis. However, there is a lack of a unified understanding of the technology and specifications of PRP in the treatment of lateral epicondylitis. Therefore, the Sports Medicine Branch of the Chinese Medical Association and Physical Medicine and Rehabilitation Branch of the Chinese Medical Association organized experts in the fields of sports medicine and rehabilitation medicine in China to formulate the "clinical expert consensus on platelet-rich plasma treatment for lateral epicondylitis (2022 version)", and proposed suggestions based on evidence-based medicine mainly from the concept, epidemiology and pathophysiology of lateral epicondylitis, symptoms, signs and imaging manifestations of lateral epicondylitis, PRP concept and application component requirements, quality control of PRP preparation technology, indications and contraindications of PRP in the treatment of lateral epicondylitis, PRP injection in the treatment of lateral epicondylitis, application of PRP in the operation of lateral epicondylitis, related problems after PRP treatment of lateral epicondylitis, evaluation of the results after PRP treatment of lateral epicondylitis, and health and economic evaluation of PRP treatment of lateral epicondylitis, so as to provide guidance for clinical diagnosis and treatment.
8.Comparison of application effects of colonoscopy, fecal immunochemical test and a novel risk-adapted screening approach in colorectal cancer screening in Xuzhou population.
Yun Xin KONG ; Dong DONG ; Hong Da CHEN ; Min DAI ; Lang ZHUO ; Pei An LOU ; Ting CAI ; Si Ting CHEN ; Jian Qiang PAN ; Yi Huan GAO ; Hang LU ; Zong Mei DONG ; Hong Ying ZHAO ; Xiao Hu LUO ; Guohui CHEN
Chinese Journal of Preventive Medicine 2022;56(8):1074-1079
Objective: To compare the application effect of the colonoscopy, fecal immunochemical test (FIT) and novel risk-adapted screening approach in colorectal cancer screening in Xuzhou population. Methods: From May 2018 to April 2019, 4 280 subjects aged 50-74 were recruited from Gulou district, Yunlong district and Quanshan district of Xuzhou. They were randomly assigned to the colonoscopy group (n=863), FIT group (n=1 723) and novel risk-adapted screening approach group (n=1 694) according to the ratio of 1∶2∶2. For the novel risk-adapted screening approach group, after the risk assessment, high-risk subjects were invited to undergo colonoscopy and low-risk subjects were invited to undergo FIT examination. All FIT positive subjects were invited to undergo colonoscopy. Colonoscopy participation rate [(the number of colonoscopies completed/the number of colonoscopies invited to participate)×100%], detection rate of colorectal lesions [(the number of diagnosed patients/the number of colonoscopies completed)×100%], colonoscopy resource load (the number of colonoscopies completed/the number of diagnosed advanced tumors) and FIT resource load in each group were calculated and compared. Results: The age of all subjects was (61±6) years old, including 1 816 males (42.43%). There was no statistically significant difference in the socio-demographic characteristics of the subjects in different screening groups. The colonoscopy participation rate was 22.60% (195/863) in the colonoscopy group, 57.04% (77/135) in the FIT group, and 33.94% (149/439) in the novel risk-adapted screening approach group, respectively. The colonoscopy participation rate was higher in the FIT group than in the colonoscopy group and the novel risk-adapted screening approach group (P<0.001). The colonoscopy participation rate of novel risk-adapted screening group was significantly higher than the colonoscopy group (P<0.001). The detection rates of advanced tumors were 6.67% (13/195), 9.09% (7/77) and 8.72% (13/149), respectively, and the difference was not statistically significant (P>0.05). The colonoscopy resource load (95%CI) was 15 (13-17) in the colonoscopy group, 11 (9-14) in the FIT group and 11 (10-13) in the novel risk-adapted screening approach group, respectively. Among them, the colonoscopy resource load of high-risk individuals in the novel risk-adapted screening approach group was 12 (9-15). FIT resource loads (95%CI) were 207 (196-218) and 88 (83-94) in the FIT group and the novel risk-adapted screening approach group. Conclusion: The combined application of risk-adapted screening approach and FIT may have a good application effect in colorectal cancer screening.
Aged
;
Colonoscopy
;
Colorectal Neoplasms/pathology*
;
Early Detection of Cancer
;
Feces
;
Female
;
Humans
;
Male
;
Mass Screening
;
Middle Aged
;
Occult Blood
9. Fuganlin oral liquid ameliorates airway remodeling through TGF-β1/Smad3 signaling pathway in asthmatic mice
Xiao-Ying LI ; Tao JIANG ; Xiao-Ying LI ; Jian-Min GUO ; Wen-Qiang ZHANG ; Jin-Long DAI ; Wei YANG
Chinese Pharmacological Bulletin 2022;38(4):619-625
Aim To explore the effect of Fuganlin on airway remodeling in obese asthmatic mice and its mechanism.Methods A model of chronic airway inflammation in C57 BL/6 mice with obese asthma induced by OVA and high-fat diet was established,and treated with Fuganlin 5.86,11.72 and 23.44 g·kg-1 by gavage.After the last challenge,the respiratory system resistance(Rrs),respiratory system elasticity(Ers),and respiratory system compliance(Crs)were measured with a lung function oscillator; the total number of white blood cells in whole blood was measured; tissue HE and MASSON staining were employed to observe the pathological changes.ELISA was used to detect the levels of IgE in serum and the levels of TGF-β1,Smad3 and SP in lung tissues; IHC was used to detect the expression levels of Smad3,SARA and protein in lung tissues.Results Fuganlin reduced the increase in the number of white blood cells in blood and inhibited the content of IgE in serum.Fuganlin could reduce the Rrs and Ers,enhance the Crs and regulate the respiratory function.Histopathological results showed that Fuganlin could reduce inflammatory cell infiltration and collagen deposition in the chronic airway inflammation model of obese mice,and inhibit bronchial mucosal proliferation; ELISA results showed that Fuganlin inhibited the expression of TGF-β1,Smad3,and SP; IHC results showed that Smad3 and SARA protein expression decreased.Conclusions The anti-obesity asthma effect of Fuganlin may help to improve respiratory function,control airway inflammation,and antagonize airway remodeling.
10.Assisting Role of Pulmonary Hypostasis Phenomenon in Diagnosis of Drowning.
Jian WU ; Zeng-Qiang LI ; Wen-Dao DAI ; Jian ZHAO ; Ya-Ping ZHOU ; Guo-Lin QUAN ; Qian-Hao ZHAO ; Yan-Bing MA ; Jian-Ding CHENG
Journal of Forensic Medicine 2022;38(1):71-76
OBJECTIVES:
To study the phenomenon of pulmonary hypostasis in corpses of various causes of death, and to explore the potential value of this phenomenon in assisting forensic pathological diagnosis of drowning.
METHODS:
A total of 235 cases with clear cause of death through systematic autopsy were collected from January 2011 to June 2021 in Guangzhou. According to the location of body discovery, the cases were divided into the water body group (97 cases) and the non-water body group (138 cases), and the water body group was further divided into the water drowning group (90 cases) and the water non-drowning group (7 cases). Non-water body group was further divided into the non-water drowning group (1 case) and the non-water non-drowning group (137 cases). Three senior forensic pathologists independently reviewed autopsy photos to determine whether there was hypostasis in the lungs. The detection rate of pulmonary hypostasis was calculated.
RESULTS:
The detection rate of pulmonary hypostasis in the water drowning group (90 cases) was 0, and the negative rate was 100%. The detection rate of pulmonary hypostasis in the water non-drowning group (7 cases) was 100% and the negative rate was 0. The detection rate of pulmonary hypostasis in the water body group and in the non-water body group (after excluding 2 cases, 136 cases were calculated) was 7.22% and 87.50%, respectively. There were statistically significant differences in the detection rate of pulmonary hypostasis between water body group and non-water body group, and between water drowning group and water non-drowning group (P<0.05).
CONCLUSIONS
The disappearance of pulmonary hypostasis can be used as a specific cadaveric sign to assist in the forensic pathological diagnosis of drowning.
Autopsy
;
Drowning/pathology*
;
Forensic Pathology
;
Humans
;
Lung/pathology*
;
Water


Result Analysis
Print
Save
E-mail