1.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Learning Curve for Using Endoscopic Saphenous Vein Harvesting in Coronary Artery Bypass Grafting
Weihua ZHANG ; Jian ZHANG ; Xiaoke SUN ; Hong LUO ; Ning MA ; Donghai LIU ; Xin ZHANG ; Chenhui QIAO
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(2):319-323
ObjectiveTo investigate the application of endoscopy in obtaining the great saphenous vein (GSV) during coronary artery bypass grafting (CABG) and explore the learning curve, with a particular focus on common challenges encountered during the learning process and their impact on early clinical outcomes. MethodsA retrospective analysis was conducted on clinical data from 83 patients who underwent off-pump CABG with endoscopic GSV harvesting at the First Affiliated Hospital of Zhengzhou University from July 2013 to April 2014. Patients were categorized into four groups based on the chronological order of their hospitalization: Group A (novice group, n=20), Group B (proficient group, n=20), Group C (progressive group, n=20), and Group D (mature group, n=23). Differences in perioperative and midterm follow-up outcomes among the groups were analyzed to determine the learning curve period. ResultsThe study population had a mean age of (60.22±8.06) years and a mean body weight of (69.77±11.66) kg. Comorbidities included hypertension (24 cases), diabetes (26 cases), and subacute cerebral infarction (14 cases). The novice group exhibited significantly shorter GSV length-to-harvest time ratio relative to the other three groups (P<0.001) and a significantly higher incidence of main vein damage (P=0.006). However, there was no statistically significant difference in graft patency at the 1-year follow-up. ConclusionThorough and reliable technical training in endoscopic GSV harvesting is essential to minimize vascular injury caused by novice operators. Approximately 20 cases of hands-on experience and a careful self-analysis of procedural challenges are likely required to achieve proficiency in GSV harvesting.
6.Bioequivalence study of ezetimibe tablets in Chinese healthy subjects
Pei-Yue ZHAO ; Tian-Cai ZHANG ; Yu-Ning ZHANG ; Ya-Fei LI ; Shou-Ren ZHAO ; Jian-Chang HE ; Li-Chun DONG ; Min SUN ; Yan-Jun HU ; Jing LAN ; Wen-Zhong LIANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2378-2382
Objective To evaluate the bioequivalence and safety of ezetimibe tablets in healthy Chinese subjects.Methods The study was designed as a single-center,randomized,open-label,two-period,two-way crossover,single-dose trail.Subjects who met the enrollment criteria were randomized into fasting administration group and postprandial administration group and received a single oral dose of 10 mg of the subject presparation of ezetimibe tablets or the reference presparation per cycle.The blood concentrations of ezetimibe and ezetimibe-glucuronide conjugate were measured by high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS),and the bioequivalence of the 2 preparations was evaluated using the WinNonlin 7.0 software.Pharmacokinetic parameters were calculated to evaluate the bioequivalence of the 2 preparations.The occurrence of all adverse events was also recorded to evaluate the safety.Results The main pharmacokinetic parameters of total ezetimibe in the plasma of the test and the reference after a single fasted administration:Cmax were(118.79±35.30)and(180.79±51.78)nmol·mL-1;tmax were 1.40 and 1.04 h;t1/2 were(15.33±5.57)and(17.38±7.24)h;AUC0-t were(1 523.90±371.21)and(1 690.99±553.40)nmol·mL-1·h;AUC0-∞ were(1 608.70±441.28),(1 807.15±630.00)nmol·mL-1·h.The main pharmacokinetic parameters of total ezetimibe in plasma of test and reference after a single meal:Cmax were(269.18±82.94)and(273.93±87.78)nmol·mL-1;Tmax were 1.15 and 1.08 h;t1/2 were(22.53±16.33)and(16.02±5.84)h;AUC0_twere(1 463.37±366.03),(1 263.96±271.01)nmol·mL-1·h;AUC0-∞ were(1 639.01±466.53),(1 349.97±281.39)nmol·mL-1·h.The main pharmacokinetic parameters Cmax,AUC0-tand AUC0-∞ of the two preparations were analyzed by variance analysis after logarithmic transformation.In the fasting administration group,the 90%CI of the log-transformed geometric mean ratios were within the bioequivalent range for the remaining parameters in the fasting dosing group,except for the Cmax of ezetimibe and total ezetimibe,which were below the lower bioequivalent range.The Cmax of ezetimibe,ezetimibe-glucuronide,and total ezetimibe in the postprandial dosing group was within the equivalence range,and the 90%CI of the remaining parameters were not within the equivalence range for bioequivalence.Conclusion This test can not determine whether the test preparation and the reference preparation of ezetimibe tablets have bioequivalence,and further clinical trials are needed to verify it.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Study on the machanism of Huannao Yicong Deoction targeting HAMP to regulate iron metabolism and improve cognitive impairment in AD model mice
Ning-Ning SUN ; Xiao-Ping HE ; Shan LIU ; Yan ZHAO ; Jian-Min ZHONG ; Ya-Xuan HAO ; Ye-Hua ZHANG ; Xian-Hui DONG
Chinese Pharmacological Bulletin 2024;40(7):1240-1248
Aim To explore the effects of Huannao Yicong decoction(HYD)on the learning and memory ability and brain iron metabolism in APP/PS1 mice and the correlation of HAMP knockout mice and APP/PS1 double transgenic model mice.Methods The ex-periment was divided into five groups,namely,HAMP-/-group(6-month HAMP gene knockout mice),APP/PS1 group(6-month APP/PS1-double-transgenic mice),HAMP-/-+HYD,APP/PS1+HYD,and negative control group(6-month C57BL/6J mice),with six mice in each group.The dose was ad-ministered(13.68 g·kg-1 weight),and the other groups received distilled water for gavage once a day for two months.After the administration of the drug,the mice in each group were tested for learning and memory in the Morris water maze;Biochemical detec-tion was performed to detect iron ion content in each mouse brain;Western blot and RT-qPCR were carried out to analyze hippocampal transferrin(TF),transfer-rin receptor1(TFR1),membrane iron transporter1(FPN1)divalent metal ion transporter 1(DMT1)and β-amyloid protein(Aβ)protein and mRNA expression levels in each group.Results Compared with the normal group,both HAMP-/-mice and APP/PS1 mice had reduced the learning and memory capacity,in-creased iron content in brain tissue,Aβ protein ex-pression increased in hippocampus of HAMP-/-group and APP/PS1 group mice(P<0.01),the protein and mRNA expression of TF,TFR1 and DMT1 increased in hippocampal tissues of HAMP-/-and APP/PS1 groups(P<0.01),and the FPN1 protein and mRNA expres-sion decreased(P<0.01).Compared with the HAMP-and APP/PS1 groups,respectively,HAMP-/-+HYD group and APP/PS1+HYD group had improved learning and memory ability,decreased iron content,decreased Aβ protein expression(P<0.01),decreased TF,TFR1,DMT1 protein and mR-NA expression(P<0.01),and increased expression of FPN1 protein and mRNA(P<0.01).Conclusions There is some association between HAMP-/-mice and APP/PS1 mice,HYD can improve the learning and memory ability of HAMP-/-and APP/PS1 mice and reduce the Aβ deposition.The mechanism may be related to the regulation of TF,TFR1,DMT1,FPN1 expression and improving brain iron overload.
9.LncRNA-CCRR regulates arrhythmia induced by myocardial infarction by affecting sodium channel ubiquitination via UBA6
Fei-Han SUN ; Dan-Ning LI ; Hua YANG ; Sheng-Jie WANG ; Hui-Shan LUO ; Jian-Jun GUO ; Li-Na XUAN ; Li-Hua SUN
Chinese Pharmacological Bulletin 2024;40(8):1437-1446
Aim To investigate the regulatory mecha-nism of arrhythmia of sodium channel ubiquitination af-ter MI and to study the electrophysiological remodeling mechanism of lncRNA-CCRR after MI for the preven-tion and treatment of arrhythmia after MI.Methods LncRNA-CCRR transgenic mice and C57BL/6 mice injected with lncRNA-CCRR overexpressed adeno-asso-ciated virus were used.Four weeks after infection,the left anterior descending branch of the coronary artery was ligated for 12 h to establish a mouse acute myocar-dial infarction model,and the incidence of arrhythmia was detected by programmed electrical stimulation.Ln-cRNA-CCRR overexpression/knockdown adeno-associ-ated virus and negative control were transfected into neonatal mouse cardiomyocytes(NMCMs),and the model was prepared by hypoxia for 12 h.LncRNA-CCRR expression was detected by FISH,Nav1.5 and UBA6 protein and Nav.1.5 mRNA expression were de-tected by Western blot and real-time quantitative poly-merase chain reaction(qRT-PCR),Nav1.5 and UBA6 expressions were detected by immunofluores-cence,and the relationship between lncRNA-CCRR and UBA6 was detected by RIP.INa current density af-ter CCRR overexpression and knockdown was detected by Whole-cell clamp patch.Results In MI mice,the expression of lncRNA-CCRR decreased,the incidence of arrhythmia increased,the expression of CCRR and Nav1.5 mRNA was down-regulated,the protein ex-pression of Nav1.5 was down-regulated,and the pro-tein expression of UBA6 was up-regulated compared with sham group.Overexpression of CCRR could re-verse the above changes.AAV-CCRR could reverse the down-regulated CCRR and Nav1.5 mRNA levels af-ter hypoxia,and improve the expression of Nav1.5 and UBA6 protein.The direct relationship between ln-cRNA-CCRR and UBA6 was identified by RIP analy-sis.The INa density increased after transfection with AAV-CCRR.The INa density decreased after transfec-tion with AAV-si-CCRR.Conclusions The expres-sion of lncRNA-CCRR decreases after MI,and ln-cRNA-CCRR can improve arrhythmia induced by MI by inhibiting UBA6 to increase the protein expression level of Nav1.5 and the density of INa.
10.Development and validation of a stromal-immune signature to predict prognosis in intrahepatic cholangiocarcinoma
Yu-Hang YE ; Hao-Yang XIN ; Jia-Li LI ; Ning LI ; Si-Yuan PAN ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Peng-Cheng WANG ; Chu-Bin LUO ; Rong-Qi SUN ; Jia FAN ; Jian ZHOU ; Zheng-Jun ZHOU ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2024;30(4):914-928
Background:
Intrahepatic cholangiocarcinoma (ICC) is a highly desmoplastic tumor with poor prognosis even after curative resection. We investigated the associations between the composition of the ICC stroma and immune cell infiltration and aimed to develop a stromal-immune signature to predict prognosis in surgically treated ICC.
Patients and methods:
We recruited 359 ICC patients and performed immunohistochemistry to detect α-smooth muscle actin (α-SMA), CD3, CD4, CD8, Foxp3, CD68, and CD66b. Aniline was used to stain collagen deposition. Survival analyses were performed to detect prognostic values of these markers. Recursive partitioning for a discrete-time survival tree was applied to define a stromal-immune signature with distinct prognostic value. We delineated an integrated stromal-immune signature based on immune cell subpopulations and stromal composition to distinguish subgroups with different recurrence-free survival (RFS) and overall survival (OS) time.
Results:
We defined four major patterns of ICC stroma composition according to the distributions of α-SMA and collagen: dormant (α-SMAlow/collagenhigh), fibrogenic (α-SMAhigh/collagenhigh), inert (α-SMAlow/collagenlow), and fibrolytic (α-SMAhigh/collagenlow). The stroma types were characterized by distinct patterns of infiltration by immune cells. We divided patients into six classes. Class I, characterized by high CD8 expression and dormant stroma, displayed the longest RFS and OS, whereas Class VI, characterized by low CD8 expression and high CD66b expression, displayed the shortest RFS and OS. The integrated stromal-immune signature was consolidated in a validation cohort.
Conclusion
We developed and validated a stromal-immune signature to predict prognosis in surgically treated ICC. These findings provide new insights into the stromal-immune response to ICC.

Result Analysis
Print
Save
E-mail