1.Construction of an infectious disease risk assessment system for childcare institutions in Shanghai
Lyulan HUANG ; Ruobing HAN ; Liang TIAN ; Junhua FAN ; Yan WANG ; Ning JIANG ; Renyi ZHU ; Jian CHEN
Shanghai Journal of Preventive Medicine 2025;37(8):692-696
		                        		
		                        			
		                        			ObjectiveTo explore the construction of a risk assessment indicator system for common infectious diseases in Shanghai’s childcare institutions, and to provide a reference standard for the prevention and control of infectious diseases, staff training and system construction in childcare institutions. MethodsBy combining the Delphi method with the literature review and expert consultation, the hierarchical dimensions and items at all levels of the risk assessment indicator system for common infectious diseases in Shanghai’s childcare institutions were constructed, and the weighting coefficients were determined by analytic hierarchy process. ResultsA total of 14 experts from the field of childcare institutions, infectious disease control, child healthcare and health supervision participated in the Delphi consultation. The system consisted of four core dimensions: organizational management, team building, hardware equipment, and infectious disease surveillance and disposal, with the weighting coefficients of 0.285 9, 0.261 6, 0.204 3 and 0.248 2, respectively. The evaluation indicator system consisted of 4 primary indicators, 15 secondary indicators and 45 tertiary items. The positivity coefficients of the two rounds of Delphi consultation were 0.93 and 1.00, the authority coefficients were both 0.81, and the Kendall’s coefficient of concordance were 0.44 and 0.49, respectively (P<0.01). ConclusionThe high expert engagement and coordination indicate that organizational management and team building remain the critical priorities for infectious disease prevention and control in Shanghai’s childcare institutions. It is recommended to strengthen financial investment, improve institutional mechanisms, and enhance personnel reserves and capacity building for healthcare teachers, thereby systematically upgrading the infectious disease control capabilities of childcare institutions. 
		                        		
		                        		
		                        		
		                        	
2.Comparison of the clinical efficacy of super pulse thulium laser enucleation of the prostate with "open tunnel" and holmium laser enucleation of the prostate for benign prostatic hyperplasia
Jidong XU ; Ning JIANG ; Jian LI ; Zhikang CAI ; Jianwei LYU ; Chuanyi HU ; Jingcun ZHENG ; Zhonglin CAI ; Huiying CHEN ; Yan GU ; Yuning WANG ; Jiasheng YAN ; Zhong WANG
Journal of Modern Urology 2025;30(1):34-38
		                        		
		                        			
		                        			[Objective] To compare the clinical efficacy of super pulse thulium laser enucleation of the prostate (SPThuLEP) with "open tunnel" and transurethral holmium laser enucleation of the prostate (HoLEP) in the treatment of benign prostatic hyperplasia (BPH), in order to provide reference for the treatment options of BPH. [Methods] The clinical data of 112 BPH patients treated in our hospital during Jan.2023 and Jul.2023 were retrospectively analyzed, including 65 treated with SPThuLEP with "open tunnel" and 57 with HoLEP.The operation time, postoperative hemoglobin decrease, postoperative bladder irrigation, catheter indwelling time, hospitalization time and complications were compared between the two groups.The changes of maximum urine flow rate (Qmax), international prostate symptom score (IPSS), quality of life score (QoL), postvoid residual (PVR) and prostate-specific antigen (PSA) were compared between the two groups before operation and one month after operation. [Results] All operations were successful without conversion to open or transurethral plasmakinetic resection.The postoperative decrease of hemoglobin in SPThuLEP group was lower than that in HoLEP group [(13.12±6.72) g/L vs. (21.02±6.51) g/L], with statistical difference (P<0.05). There were no significant differences in the operation time [(63.35±15.73) min vs.(61.02±17.55) min], postoperative bladder irrigation time [(1.07±0.45) d vs. (1.06±0.36) d], catheter indwelling time [(2.98±0.56) d vs. (3.01±0.63) d] and hospitalization time [(3.63±0.61) d vs.(3.79±0.76) d] between the two groups (P>0.05). No blood transfusion, secondary bleeding or unplanned hospitalization occurred, and there were no serious complications such as transurethral electroresection syndrome (TURS), urethral stricture and urinary incontinence.One month after operation, the Qmax, IPSS, QoL, PVR and PSA of the two groups were significantly improved compared with those before operation (P<0.05), but with no statistical difference between the two groups (P>0.05). [Conclusion] SPThuLEP with "open tunnel" has comparable efficacy as HoLEP in the treatment of BPH.With advantages of small amount of bleeding and high safety, this minimally invasive technique can be widely popularized in clinical practice.
		                        		
		                        		
		                        		
		                        	
3.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
		                        		
		                        			
		                        			Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen. 
		                        		
		                        		
		                        		
		                        	
4.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
		                        		
		                        			
		                        			 The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure 
		                        		
		                        	
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
		                        		
		                        			 Background:
		                        			s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated. 
		                        		
		                        			Methods:
		                        			In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs. 
		                        		
		                        			Results:
		                        			Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment. 
		                        		
		                        			Conclusions
		                        			We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression. 
		                        		
		                        		
		                        		
		                        	
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
		                        		
		                        			 Background:
		                        			s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated. 
		                        		
		                        			Methods:
		                        			In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs. 
		                        		
		                        			Results:
		                        			Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment. 
		                        		
		                        			Conclusions
		                        			We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression. 
		                        		
		                        		
		                        		
		                        	
7.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
		                        		
		                        			 Background:
		                        			s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated. 
		                        		
		                        			Methods:
		                        			In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs. 
		                        		
		                        			Results:
		                        			Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment. 
		                        		
		                        			Conclusions
		                        			We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression. 
		                        		
		                        		
		                        		
		                        	
8.Developmental toxicity of Cry1Ab protein in the embryonic stem-cell model
Yuanzhi JIAN ; Fei WANG ; Ning YIN ; Ruoyu ZHOU ; Junbo WANG
Journal of Peking University(Health Sciences) 2024;56(2):213-222
		                        		
		                        			
		                        			Objective:To evaluate the developmental toxicity of Cry1Ab protein by studying its effects on cell proliferation and differentiation ability using a developmental toxicity assessment model based on embryonic stem-cell.Methods:Cry1Ab protein was tested in seven dose groups(31.25,62.50,125.00,250.00,320.00,1 000.00,and 2 000.00 μg/L)on mouse embryonic stem cells D3(ES-D3)and 3T3 mouse fibroblast cells,with 5-fluorouracil(5-FU)used as the positive control and phos-phate buffer saline(PBS)as the solvent control.Cell viability was detected by CCK-8 assay to calculate the 50%inhibitory concentration(IC50)of the test substance for different cells.Additionally,Cry1 Ab protein was tested in five dose groups(125.00,250.00,320.00,1 000.00,and 2 000.00 μg/L)on ES-D3 cells,with PBS as the solvent control and 5-FU used for model validation.After cell treatment,cardiac differentiation was induced using the embryonic bodies(EBs)culture method.The growth of EBs was observed under a microscope,and their diameters on the third and fifth days were measured.The proportion of EBs differentiating into beating cardiomyocytes was recorded,and the 50%inhibition con-centration of differentiation(ID50)was calculated.Based on a developmental toxicity discrimination func-tion,the developmental toxicity of the test substances was classified.Furthermore,at the end of the cul-ture period,mRNA expression levels of cardiac differentiation-related markers(Oct3/4,GATAA-4,Nkx2.5,and β-MHC)were quantitatively detected using real-time quantitative polymerase chain reaction(qPCR)in the collected EBs samples.Results:The IC50 of 5-FU was determined as 46.37 μg/L in 3T3 cells and 32.67 μg/L in ES-D3 cells,while the ID50 in ES-D3 cells was 21.28 μg/L.According to the discrimination function results,5-FU was classified as a strong embryotoxic substance.There were no sta-tistically significant differences in cell viability between different concentrations of Cry 1 Ab protein treat-ment groups and the control group in both 3T3 cells and ES-D3 cells(P>0.05).Moreover,there were no statistically significant differences in the diameter of EBs on the third and fifth days,as well as their morphology,between the Cry1Ab protein treatment groups and the control group(P>0.05).The cardi-ac differentiation rate showed no statistically significant differences between different concentrations of Cry1Ab protein treatment groups and the control group(P>0.05).5-FU significantly reduced the mRNA expression levels of β-MHC,Nkx2.5,and GATA-4(P<0.05),showing a dose-dependent trend(P<0.05),while the mRNA expression levels of the pluripotency-associated marker Oct3/4 exhibited an increasing trend(P<0.05).However,there were no statistically significant differences in the mRNA expression levels of mature cardiac marker β-MHC,early cardiac differentiation marker Nkx2.5 and GATA-4,and pluripotency-associated marker Oct3/4 between the Cry1Ab protein treatment groups and the control group(P>0.05).Conclusion:No developmental toxicity of Cry1Ab protein at concen-trations ranging from 31.25 to 2 000.00 μg/L was observed in this experimental model.
		                        		
		                        		
		                        		
		                        	
9.Superior vena cava syndrome and pulmonary artery stenosis in a patient with lung metastases of bladder cancer
Jian-Ke LI ; Ya-Nan GU ; Jun-Hao LI ; Liang-Wen WANG ; Ning-Zi TIAN ; Wei CHEN ; Xiao-Lin WANG ; Yi CHEN
Fudan University Journal of Medical Sciences 2024;51(2):277-279,284
		                        		
		                        			
		                        			Superior vena cava syndrome(SVCS)is a group of clinical syndromes caused by obstruction of the superior vena cava and its major branches from various causes.Pulmonary artery stenosis(PS)is a complication of lung cancer or mediastinal tumours.SVCS combined with PS due to pulmonary metastases from bladder cancer is extremely rare and has not been reported in the literature.Here we reported an old male patient with pulmonary metastases from bladder cancer presenting with swelling of the head,neck and both upper limbs.SVCS combined with PS was clarified by pulmonary artery computed tomography angiography(CTA)and digital subtraction angiography(DSA).Endovascular stenting was used to treat SVCS.Angiography also showed that PS had not caused pulmonary hypertension and did not need to be treated.The swelling of the patient's head,neck and upper limbs was gradually reduced after the procedure.
		                        		
		                        		
		                        		
		                        	
10.Effect of carbonic anhydrase 9 on hypoxia-induced proliferation of retinal microvascular endothelial cells in preterm fetus
Xianqiong LUO ; Wanwan FAN ; Ning WANG ; Juan CHEN ; Jian MA
Chinese Journal of Neonatology 2024;39(1):38-44
		                        		
		                        			
		                        			Objective:We applied a hypoxia-induced model of human fetal retinal microvascular endothelial cell (RMEC) to study the effect of carbonic anhydrase 9 (CA9) on cell proliferation.Methods:The eyeballs of spontaneously aborted fetuses in Guangdong Women and Children's Hospital were obtained, and the retinas were isolated. RMEC was obtained by trypsin and collagenase two-step enzyme digestion, and endothelial cells were identified by CD34. The fetal RMEC and the purchased adult RMEC were cultured in normoxic and hypoxic incubators (1%O 2+5%CO 2+94%N 2), and the expression of CA9 was detected by qPCR and Western blot. After knocking down the CA9 by small interference RNA technique, the cell proliferation was detected by CCK-8 method, and the cell viability was detected by CCK-8 after adding CA9 inhibitor U-104. Results:The primary RMEC was extracted successfully. Immunofluorescence staining showed the percentage of CD34 positive cells in the third-generation cells was nearly 100%. The expression of CA9 mRNA in immature fetus and adult RMEC under hypoxia culture was higher than that under normoxic culture (fetal 1% O 2 group vs. fetal 21% O 2 group: 67.80±10.31 vs. 1.00±0.04, P<0.001; adult 1% O 2 group vs. adult 21% O 2 group: 1.72±0.22 vs. 1.00±0.02, P=0.014). Western blot analysis showed significantly increased expression of CA9 in the fetal RMEC exposed to hypoxia, which aligned with the expression of CA9 mRNA. When fetal RMEC was transfected with siCA9 20 nM, the knockdown rate of CA9 was 95% ( P<0.001). CCK-8 assay showed significantly lower proliferation of fetal RMEC cells in siCA9 group compared to siNC group (0.57±0.05 vs. 0.90±0.03, P<0.001), which was reflected by the OD value. With the addition of 100 μM CA9 inhibitor U-104, the viability of fetal RMEC in the treated groupwas significantly lower than that in the untreated group (99.16%±3.82% vs. 119.10% ±1.72%, P=0.002). Conclusions:The expression of CA9 differed between adult and preterm fetus in our hypoxia-induced RMEC model. Inhibiting CA9 can inhibit the proliferation of retinal microvascular endothelial cells of preterm fetus.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail