1.Role and Mechanism of Cucurbitacin B in Suppressing Proliferation of Breast Cancer 4T1 Cells via Inducing Ferroptosis
Yidan RUAN ; Huizhong ZHANG ; Huating HUANG ; Pingzhi ZHANG ; Aina YAO ; Yongqiang ZHANG ; Xiaohan XU ; Shiman LI ; Jian NI ; Xiaoxu DONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):91-97
ObjectiveTo explore the role of cucurbitacin B (CuB) in inducing ferroptosis in 4T1 cells and its mechanism. MethodsThe effects of CuB(0.2, 0.4, 0.8 μmol·L-1)on the proliferation ability of 4T1 cells in vitro were detected using the methyl thiazolyl tetrazolium (MTT) assay. The clonogenic ability of 4T1 cells was detected by the plate cloning assay, and the levels of lactate dehydrogenase (LDH) in 4T1 cells were detected by the use of a kit. The mitochondrial membrane potential and reactive oxygen species (ROS) levels in 4T1 cells were detected by flow cytometry, and the mitochondrial ultrastructure of 4T1 cells was observed by transmission electron microscopy. The western blot was used to detect the expression of ferroptosis-related protein p53 in 4T1 cells, solute carrier family 7 member 11 (SCL7A11), glutathione peroxidase 4 (GPX4), long-chain acyl-CoA synthetase 4 (ACSL4), transferrin receptor protein 1 (TFR1), and ferritin heavy chain 1 (FTH1). ResultsCompared with that in the blank group, the survival rate of 4T1 cells in CuB groups was significantly decreased (P<0.05), and the number of cell clones in CuB groups was significantly reduced (P<0.01). In addition, compared with that in the blank group, the leakage of LDH in cells in CuB groups was significantly increased (P<0.01), and the mitochondrial membrane potential of cells in CuB groups decreased significantly (P<0.01). Cellular ROS levels were significantly elevated in CuB groups (P<0.01). The mitochondria of cells in CuB groups were obviously wrinkled, and the mitochondrial cristae were reduced or even disappeared. Compared with that in the blank group, the protein expression of p53, ACSL4, and TFR1 were significantly up-regulated in CuB groups (P<0.05), and that of SLC7A11, GPX4, and FTH1 were significantly down-regulated (P<0.05). ConclusionCuB may inhibit SLC7A11 and GPX4 expression by up-regulating the expression of p53, which in turn regulates the p53/SLC7A11/GPX4 signaling pathway axis and accelerates the generation of lipid peroxidation substrate by up-regulating the expression of ACSL4. It up-regulates TFR1 expression to promote cellular uptake of Fe3+ and down-regulates the expression of FTH1 to reduce the ability of iron storage, resulting in an elevated free Fe2+ level. It catalyzes the Fenton reaction, generates excess ROS, imbalances the antioxidant system and iron metabolism, and then induces ferroptosis in 4T1 cells.
2.Role and Mechanism of Cucurbitacin B in Suppressing Proliferation of Breast Cancer 4T1 Cells via Inducing Ferroptosis
Yidan RUAN ; Huizhong ZHANG ; Huating HUANG ; Pingzhi ZHANG ; Aina YAO ; Yongqiang ZHANG ; Xiaohan XU ; Shiman LI ; Jian NI ; Xiaoxu DONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):91-97
ObjectiveTo explore the role of cucurbitacin B (CuB) in inducing ferroptosis in 4T1 cells and its mechanism. MethodsThe effects of CuB(0.2, 0.4, 0.8 μmol·L-1)on the proliferation ability of 4T1 cells in vitro were detected using the methyl thiazolyl tetrazolium (MTT) assay. The clonogenic ability of 4T1 cells was detected by the plate cloning assay, and the levels of lactate dehydrogenase (LDH) in 4T1 cells were detected by the use of a kit. The mitochondrial membrane potential and reactive oxygen species (ROS) levels in 4T1 cells were detected by flow cytometry, and the mitochondrial ultrastructure of 4T1 cells was observed by transmission electron microscopy. The western blot was used to detect the expression of ferroptosis-related protein p53 in 4T1 cells, solute carrier family 7 member 11 (SCL7A11), glutathione peroxidase 4 (GPX4), long-chain acyl-CoA synthetase 4 (ACSL4), transferrin receptor protein 1 (TFR1), and ferritin heavy chain 1 (FTH1). ResultsCompared with that in the blank group, the survival rate of 4T1 cells in CuB groups was significantly decreased (P<0.05), and the number of cell clones in CuB groups was significantly reduced (P<0.01). In addition, compared with that in the blank group, the leakage of LDH in cells in CuB groups was significantly increased (P<0.01), and the mitochondrial membrane potential of cells in CuB groups decreased significantly (P<0.01). Cellular ROS levels were significantly elevated in CuB groups (P<0.01). The mitochondria of cells in CuB groups were obviously wrinkled, and the mitochondrial cristae were reduced or even disappeared. Compared with that in the blank group, the protein expression of p53, ACSL4, and TFR1 were significantly up-regulated in CuB groups (P<0.05), and that of SLC7A11, GPX4, and FTH1 were significantly down-regulated (P<0.05). ConclusionCuB may inhibit SLC7A11 and GPX4 expression by up-regulating the expression of p53, which in turn regulates the p53/SLC7A11/GPX4 signaling pathway axis and accelerates the generation of lipid peroxidation substrate by up-regulating the expression of ACSL4. It up-regulates TFR1 expression to promote cellular uptake of Fe3+ and down-regulates the expression of FTH1 to reduce the ability of iron storage, resulting in an elevated free Fe2+ level. It catalyzes the Fenton reaction, generates excess ROS, imbalances the antioxidant system and iron metabolism, and then induces ferroptosis in 4T1 cells.
3.Distribution characteristics of bacterial communities in central air-conditioning ventilation systems of a Grade 3A hospital in Shanghai based on 16S rRNA sequencing
Jun NI ; Haiyun ZHANG ; Jian CHEN ; Lijun ZHANG ; Yongping LIU ; Xiaojing LI ; Yiming ZHENG ; Liping ZHANG
Journal of Environmental and Occupational Medicine 2025;42(6):732-739
Background A diverse cohort of patients and susceptible individuals congregate in healthcare facilities, where exposure to pathogenic microorganisms associated with respiratory infectious diseases constitutes a significant risk factor for cross-infection. Central air-conditioning ventilation systems improve some indoor environment indicators while exacerbating the risk of transmission of respiratory infectious diseases. Objective To investigate the distribution characteristics of microbial communities in the central air-conditioning ventilation systems of hospitals, providing a scientific basis for the selection of microbial indicators in hygiene standards for hospital central air-conditioning ventilation systems and for hospital risk early warning systems. Methods In October 2023, two central air-conditioning ventilation systems were selected from a Grade 3A hospital in Shanghai: one was an all-air air-conditioning system serving the waiting area on the ground floor, and the other was a fan coil plus fresh air system serving the outpatient area on the third floor. Samples from four different components of the ventilation systems—air outlets, filters, surface coolers, and condensate trays—were collected for high-throughput sequencing of the 16S rRNA gene to analyze bacterial communities. Alpha-diversity and beta-diversity analyses were performed to investigate the microbial community composition and diversity characteristics of the hospital central air-conditioning ventilation systems. Functional analysis was conducted to determine the relative abundance of bacterial functions in these systems.Results A total of 528 operational taxonomic units (OTUs) were identified, encompassing 20 bacterial phyla, 37 classes, 79 orders, 123 families, and 240 genera. The analysis revealed that the bacterial community was predominantly composed of Proteobacteria, Gemmatimonadates, Bacteroidetes, and Actinobacteria. The diversity analysis indicated that bacterial community richness and diversity were highest in the condensate trays, while no statistically significant differences (P > 0.05) were observed in the bacterial community composition among the air outlets, filters, and surface coolers. The functional analysis showed that the bacterial communities in the central air-conditioning ventilation systems primarily exhibited chemoheterotrophic, oxidative energy-dependent heterotrophic, and ureolytic functional characteristics. Conclusion The dominance of Proteobacteria suggests that this phylum exhibits strong adaptability in the central air-conditioning ventilation systems, possibly related to its ability to survive and reproduce under varying environmental conditions. The diversity analysis indicates that the condensate tray is a critical area for bacterial proliferation in the central air-conditioning ventilation systems. The similarity in environmental conditions among the air outlets, filters, and surface coolers result in similar bacterial community structures. The functional analysis reveals that the bacterial communities possess robust energy conversion and metabolic capabilities, potentially contributing to processes such as organic matter decomposition and nitrogen cycling within the central air-conditioning ventilation systems.
4.Screening and bioinformatics analysis of key autophagy-related genes in alcoholic hepatitis
Chao YUAN ; Qinghai LIAN ; Beibei NI ; Yan XU ; Tong ZHANG ; Jian ZHANG
Organ Transplantation 2024;15(1):90-101
Objective To screen key autophagy-related genes in alcoholic hepatitis (AH) and investigate potential biomarkers and therapeutic targets for AH. Methods Two AH gene chips in Gene Expression Omnibus (GEO) and autophagy-related data sets obtained from MSigDB and GeneCards databases were used, and the key genes were verified and obtained by weighted gene co-expression network analysis (WGCNA). The screened key genes were subject to gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) and immune infiltration analyses. Messenger RNA (mRNA)- microRNA (miRNA) network was constructed to analyze the expression differences of key autophagy-related genes during different stages of AH, which were further validated by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) in the liver tissues of AH patients and mice. Results Eleven autophagy-related genes were screened in AH (EEF1A2, CFTR, SOX4, TREM2, CTHRC1, HSPB8, TUBB3, PRKAA2, RNASE1, MTCL1 and HGF), all of which were up-regulated. In the liver tissues of AH patients and mice, the relative expression levels of SOX4, TREM2, HSPB8 and PRKAA2 in the AH group were higher than those in the control group. Conclusions SOX4, TREM2, HSPB8 and PRKAA2 may be potential biomarkers and therapeutic targets for AH.
5.Trilogy of drug repurposing for developing cancer and chemotherapy-induced heart failure co-therapy agent.
Xin CHEN ; Xianggang MU ; Lele DING ; Xi WANG ; Fei MAO ; Jinlian WEI ; Qian LIU ; Yixiang XU ; Shuaishuai NI ; Lijun JIA ; Jian LI
Acta Pharmaceutica Sinica B 2024;14(2):729-750
Chemotherapy-induced complications, particularly lethal cardiovascular diseases, pose significant challenges for cancer survivors. The intertwined adverse effects, brought by cancer and its complication, further complicate anticancer therapy and lead to diminished clinical outcomes. Simple supplementation of cardioprotective agents falls short in addressing these challenges. Developing bi-functional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously. Drug repurposing was naturally endowed with co-therapeutic potential of two indications, implying a unique chance in the development of bi-functional agents. Herein, we further proposed a novel "trilogy of drug repurposing" strategy that comprises function-based, target-focused, and scaffold-driven repurposing approaches, aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent. Through function-based repurposing, a cardioprotective agent, carvedilol (CAR), was identified as a potential neddylation inhibitor to suppress lung cancer growth. Employing target-focused SAR studies and scaffold-driven drug design, we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection. Remarkably, optimal derivative 43 displayed promising bi-functional effects, especially in various self-established heart failure mice models with and without tumor-bearing. Collectively, the present study validated the practicability of the "trilogy of drug repurposing" strategy in the development of bi-functional co-therapy agents.
6.Active Ingredients of Chinese Medicines Induce Ferroptosis in Tumor Cells: A Review
Huizhong ZHANG ; Yibo ZHANG ; Jing FU ; Huating HUANG ; Yidan RUAN ; Xingbin YIN ; Changhai QU ; Jian NI ; Xiaoxu DONG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(9):245-253
Ferroptosis, a new form of programmed cell death different from apoptosis, necrosis, and autophagy, is closely associated with a variety of physiological and pathological processes. Iron-mediated accumulation of reactive oxygen species is the main inducement of ferroptosis, the mechanism of which is related to intracellular lipid metabolism, iron metabolism, and antioxidant defense pathways. Multiple signaling axes and regulators jointly regulate the occurrence and disruption of ferroptosis. Studies have demonstrated that ferroptosis regulates the growth and proliferation of tumor cells. Inducing ferroptosis in tumor cells can control the growth, metastasis, and multi-drug resistance of tumors. Therefore, the effect and mechanism of ferroptosis on tumor cells have become a hot topic in anti-cancer research. As the research advances, a variety of ferroptosis inducers has been used in the clinical chemotherapy for cancers and demonstrate significant efficacy. Accordingly, the development of ferroptosis-inducing anticancer drugs has become a new research direction for tumor treatment. Some active ingredients such as lycorine, oleanolic acid, dihydroartemisinin, pseudolaric acid B, and ophiopogonin B of Chinese medicines can induce ferroptosis in tumor cells via lipid metabolism, iron metabolism, system Xc-, and GPX4/GSH to regulate the development of tumors, demonstrating a promising prospect in clinical treatment. Based on the theory of the mechanism of ferroptosis, this paper reviews the research progress in ferroptosis induced by active ingredients of Chinese medicines in tumor cells and describes the metabolic regulatory network of ferroptosis from signaling pathways and regulatory factors, providing new strategies for applying active ingredients of Chinese medicines in the treatment of tumors.
7.Total Saponins in Paridis Rhizoma: A Review
Yibo ZHANG ; Huizhong ZHANG ; Jing FU ; Yidan RUAN ; Aina YAO ; Pingzhi ZHANG ; Xingbin YIN ; Changhai QU ; Jian NI ; Xiaoxu DONG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):232-243
Paridis Rhizoma possesses the functions of clearing heat and detoxifying, alleviating swelling and relieving pain, cooling the liver and calming the convulsion. Saponins are the main active components of Paridis Rhizoma. Studies have shown that total saponins in Paridis Rhizoma have obvious inhibitory effect on solid tumors such as breast cancer, lung cancer, gastric cancer, and liver cancer and non-solid tumors such as leukemia. The saponins may exert the anti-tumor effects by inhibiting the proliferation, migration, and invasion of tumor cells, regulating cell cycle, inducing apoptotic and non-apoptotic death pathways, and regulating metabolism and tumor microenvironment. Furthermore, total saponins in Paridis Rhizoma showed anti-inflammatory, antioxidant, antimicrobial, hemostatic, and uterus-contracting activities. At the same time, they may induce apoptosis of normal cells, inflammation and oxidative stress, and metabolic disorders. In recent years, the reports of liver injury, reproductive injury, gastrointestinal injury, hemolysis, and other adverse reactions caused by total saponins in Paridis Rhizoma have been increasing. Pharmacokinetic studies have shown that there are significant differences in the metabolism of total saponins in Paridis Rhizoma administrated in different ways. Injection has a fast clearance rate, while oral administration may have hepatoenteric circulation. Meanwhile, due to the low solubility and activation of P-glycoprotein (P-gp) molecular pump, the prototype absorption, intestinal permeability, and recovery rate of total saponins in Paridis Rhizoma are poor, which affects the bioavailability. The bioavailability can be improved to some extent by preparing new dosage forms or new drug delivery systems with advanced technology. This paper reviews the pharmacological effect, pharmacokinetics, and adverse reactions of Rhizoma Paridis total saponins by searching the China National Knowledge Infrastructure (CNKI), VIP, and Web of Science with ''Rhizoma Paridis total saponins'' as the keywords, hoping to provide references for the research, development, and clinical application of such components.
8.Characteristics of rabies-exposed population in Wenzhou City from 2014 to 2023
WANG Jian ; XIE Huasen ; CHI Haichao ; LI Xiaowei ; LE Siyu ; NI Chaorong
Journal of Preventive Medicine 2024;36(8):710-713
Objective:
To investigate the characteristics of rabies-exposed population in Wenzhou City, Zhejiang Province from 2014 to 2023, so as to provide insights into the prevention and control of rabies.
Methods:
Data of rabies-exposed population in Wenzhou City from 2014 to 2023 were collected through Wenzhou Rabies-Exposed Population Summary Sheet reported by dog injury clinics. The species of animals causing injuries, exposure time, exposure grade, exposure site, and post-exposure treatment were descriptively analyzed.
Results:
Totally 709 900 patients were admitted to dog injury clinics in Wenzhou City from 2014 to 2023, and the exposure rate showed an increasing trend (Z=7.238, P<0.001), with an average annual exposure rate of 750.75/105. The number of cases with exposure to rabies peaked in July (79 230 cases, 11.16%) and August (78 570 cases, 11.07%). Dogs were predominant animals causing injuries (448 900 cases, 63.23%), and the exposure rate showed a downward trend (Z=-5.921, P<0.001); cats were the second (175 142 cases, 24.67%), and the exposure rate showed an upward trend (Z=23.314, P<0.001). The upper (379 695 cases, 53.49%) and lower limbs (287 521 cases, 40.50%) were the main exposure sites. There were 21 034 cases (2.96%) exposed to head and face, and the exposure rate of head and face showed an upward trend (Z=3.549, P<0.001). Grade II exposure was the most common (403 881 cases, 56.89%), and the exposure rate showed an upward trend (Z=8.769, P<0.001). The proportion of using human rabies immune globulin was 23.13% in Grade III exposed population, showing a downward trend (Z=-12.848, P<0.001).
Conclusions
The exposure rate of rabies in Wenzhou City showed an upward trend from 2014 to 2023, with July and August as the peak months of exposure. Injuries mainly caused by dogs, while the exposure rate of cat bites showed an upward trend. The proportion of using human rabies immune globulin needs to be improved.
9.Expert Consensus of Multidisciplinary Diagnosis and Treatment for Paroxysmal Nocturnal Hemoglobinuria(2024)
Miao CHEN ; Chen YANG ; Ziwei LIU ; Wei CAO ; Bo ZHANG ; Xin LIU ; Jingnan LI ; Wei LIU ; Jie PAN ; Jian WANG ; Yuehong ZHENG ; Yuexin CHEN ; Fangda LI ; Shunda DU ; Cong NING ; Limeng CHEN ; Cai YUE ; Jun NI ; Min PENG ; Xiaoxiao GUO ; Tao WANG ; Hongjun LI ; Rongrong LI ; Tong WU ; Bing HAN ; Shuyang ZHANG ; MULTIDISCIPLINE COLLABORATION GROUP ON RARE DISEASE AT PEKING UNION MEDICAL COLLEGE HOSPITAL
Medical Journal of Peking Union Medical College Hospital 2024;15(5):1011-1028
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic stem cell disease caused by abnormal expression of glycosylphosphatidylinositol (GPI) on the cell membrane due to mutations in the phosphatidylinositol glycan class A(PIGA) gene. It is commonly characterized by intravascular hemolysis, repeated thrombosis, and bone marrow failure, as well as multiple systemic involvement symptoms such as renal dysfunction, pulmonary hypertension, swallowing difficulties, chest pain, abdominal pain, and erectile dysfunction. Due to the rarity of PNH and its strong heterogeneity in clinical manifestations, multidisciplinary collaboration is often required for diagnosis and treatment. Peking Union Medical College Hospital, relying on the rare disease diagnosis and treatment platform, has invited multidisciplinary clinical experts to form a unified opinion on the diagnosis and treatment of PNH, and formulated the
10.Mechanism of Polyphyllin Ⅱ in Induction of Ferroptosis in Hepatocellular Carcinoma HepG2 Cells
Huizhong ZHANG ; Jian NI ; Hulinyue PENG ; Yibo ZHANG ; Xiaohan XU ; Shiman LI ; Yidan RUAN ; Yongqiang ZHANG ; Pingzhi ZHANG ; Aina YAO ; Ying WANG ; Xiaoxu DONG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(17):105-112
ObjectiveTo investigate the induction of ferroptosis by polyphyllin Ⅱ (PPⅡ) in hepatocellular carcinoma HepG2 cells and its underlying mechanism. MethodThe effect of PPⅡ (0, 1.5, 3.0, 4.5, 6.0, 9.0, 18.0 mg·L-1) on the in vitro proliferation of HepG2 cells was assessed using the methyl thiazolyl tetrazolium (MTT) assay. Colony formation ability of HepG2 cells was evaluated through a colony formation assay. Cell migration ability was assessed via a scratch assay. Lactate dehydrogenase (LDH) content in HepG2 cells was measured using a kit. Reactive oxygen species (ROS) levels in HepG2 cells were observed using a fluorescence inverted microscope. Malondialdehyde (MDA), glutathione (GSH), and free Fe2+ content in HepG2 cells were detected using respective kits. The mitochondrial ultrastructure in HepG2 cells was observed by transmission electron microscopy. The expression of ferroptosis-related proteins p53, solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), long-chain acyl-CoA synthetase 4 (ACSL4), and transferrin receptor 1 (TFR1) in HepG2 cells was detected using Western blot. ResultCompared with the control group, the PPⅡ treatment groups showed significantly decreased survival rate of HepG2 cells in a dose-dependent manner (P<0.01), significantly reduced number of cell colonies (P<0.01), significantly shortened scratch healing distance, inverse correlation of the migration distance with drug concentration (P<0.01), significantly increased LDH leakage in cells (P<0.01), significantly enhanced relative fluorescence intensity of intracellular ROS, and significantly increased accumulation of lipid peroxide MDA (P<0.01), decreased intracellular GSH content with increasing drug concentration (P<0.01), and significantly enhanced fluorescence intensity of FeRhoNox-1 in cells (P<0.01). Moreover, cells exhibited vacuolation, and mitochondria showed significant shrinkage with reduced or even disappeared cristae. Compared with the results in the control group, the expression of p53, ACSL4, and TFR1 proteins significantly increased, while the expression of SLC7A11 and GPX4 proteins significantly decreased in the PPⅡ treatment groups (P<0.05). ConclusionIn summary, PPⅡ induces ferroptosis in HepG2 cells by regulating the p53/SLC7A11/GPX4 signaling axis, promoting ACSL4 expression and Fe3+ uptake, leading to an imbalance in the antioxidant system.


Result Analysis
Print
Save
E-mail