1.Incremental effectiveness of two-dose of mumps-containing vaccine in chidren
Chinese Journal of School Health 2025;46(6):883-887
Objective:
To evaluate the incremental vaccine effectiveness (VE) of two dose of the mumps containing vaccine (MuCV) in chidren, so as to provide a basis for optimizing mumps immunization strategies.
Methods:
A 1∶2 frequency matched case-control study was conducted by using reported mumps cases in childcare centers or schools from Lu an, Hefei, Ma anshan and Huainan cities of Anhui Province from September 1, 2023 to June 30, 2024, as a case group(383 cases). And healthy children in the same classroom were selected as a control group(766 cases). The MuCV immunization histories of participants were collected to estimate the incremental VE of the second dose of MuCV against mumps. Group comparisons were performed using the Chi square test or t-test. For matched case-control pairs, the Cox regression model was employed to calculate the odds ratio (OR) with 95% confidence interval (CI) for two dose MuCV vaccination and to estimate the incremental vaccine effectiveness (VE).
Results:
There were no statistically significant differences between the case and control groups regarding gender, age, dosage of MuCV vaccination and the time interval since the last dose vaccination( χ 2/t=0.05, 0.20, 0.94, -0.02, P >0.05). The proportions of the case and control groups vaccinated with two doses of MuCV were 26.63% and 29.37%, respectively, and the overall incremental VE of the second dose of MuCV was 40.73% (95% CI=3.03%-63.77%, P <0.05). Subgroup analyses revealed that the incremental VE for children with a period of ≥1 year between the two doses of MuCV was 54.13% (95% CI=1.90%-78.56%, P <0.05), while for children with a period of <1 year, it was 30.63% (95% CI=-28.59%-62.58%, P >0.05). The incremental VE of the second dose of MuCV was 30.36% (95% CI=-25.95%-61.50%, P >0.05) in kindergarten children and 66.73% (95% CI=14.92%-86.99%, P <0.05) in elementary and secondary school students. The incremental VE was 28.78% (95% CI=-27.46%-60.21%, P >0.05) within five years of the last dose of MuCV vaccination and 66.07% (95% CI=-41.56%-91.87%, P >0.05) for vaccinations administered beyond five years.
Conclusions
The second dose of MuCV may offer additional protection for children; however, extending the interval between two dose of MuCV (<1 year) has shown limited incremental protective effects. Therefore, it is crucial to consider optimizing current immunization strategies for mumps.
2.Clinical and immunological characteristics of acute viral infection-related encephalopathy
Jianzhao ZHANG ; Caihui MA ; Jing SUN ; Dongqing LI ; Zhao LIU ; Shuo MIAO ; Hui JIAO ; Jian YANG
Chinese Journal of Applied Clinical Pediatrics 2024;39(4):298-302
Objective:To analyze the clinical and immunological characteristics of children with acute viral infection-related encephalopathy.Methods:Case-control study.A retrospective analysis was conducted on the clinical data of children diagnosed with acute viral infection-related encephalopathy during hospitalization at the Children′s Hospital, Capital Institute of Pediatrics from January 2020 to January 2023.According to the last follow-up modified Rankin scale (mRS) score, these children were divided into a good prognosis group (mRS score ≤2) and a poor prognosis group (mRS score >2), and the clinical and immunological characteristics of the children with different prognoses were analyzed.The binary Logistic regression was used to analyze the risk factors for poor prognosis.Results:A total of 28 children with acute viral infection-related encephalopathy aged 4 months to 11 years were included.There were 16 males (57%) and 12 females (43%). Among the preinfection viruses, there were 16 children of Corona virus disease 2019, 8 children of influenza A virus, 3 children of influenza B virus, and 1 child of norovirus.Among them, there were 21 children with acute necrotizing encephalopathy, 4 children with acute encephalopathy with biphasic seizures and late reduced diffusion, 2 children with mild encephalitis with a reversible splenial lesion, and 1 child with hemorrhagic shock and encephalopathy syndrome.Among the first symptoms, 24 children (85.7%) had consciousness disorders, 23 children (82.1%) had seizures, 17 children (60.7%) had speech disorders, 11 children (39.3%) had involuntary movements, and 10 children (35.7%) had abnormal mental behavior.For the site of lesion, the cranial nuclear magnetic resonance imaging revealed 17 in the thalamus, 10 in the brainstem, 9 in the basal ganglia, 8 in the cerebellar hemisphere, and 4 in the corpus callosum.In the last follow-up evaluation, 17 children had a mRS score of >2, and 11 children had a mRS score of ≤2.Univariate analysis showed that disturbance of consciousness, seizure cluster, brain stem lesion, absolute value of serum T lymphocytes, cerebrospinal fluid(CSF) protein, CSF cytokines [interleukin(IL)-1β, IL-6 and IL-8]were higher in the poor prognosis group than those in the good prognosis group.Multivariate Logistic regression analysis indicated that brain stem disease, CSF IL-1β and T lymphocyte absolute number were independent risk factors for poor prognosis.Conclusions:Brain stem lesions, cerebrospinal fluid IL-1β and the absolute number of T lymphocytes have predictive value for the prognosis of acute viral infection-associated encephalopathy.The more severe the conditions, the lower the T lymphocytes, and the higher the cytokines in some cerebrospinal fluid.
3.Promotion mechanism of astragaloside on axon repair and regeneration in experimental autoimmune encephalomyelitis mice
Jian-Chun LIU ; Hong-Zhen ZHANG ; Qing WANG ; Hui-Jie FAN ; Li-Juan SONG ; Zhi CHAI ; Cun-Gen MA
Medical Journal of Chinese People's Liberation Army 2024;49(8):914-921
Objective To investigate the effects of astragaloside Ⅳ(AS-Ⅳ)on axon growth inhibitory factor A(Nogo-A)and its downstream pathway protein RHO-associated coiled spiral kinase 2(ROCK2)in experimental autoimmune encephalomyelitis(EAE)mice,and to explore the mechanism by which it promotes axon repair and regeneration.Methods EAE model was induced in C57BL/6 female mice by subcutaneous injection of myelin oligodendrocyte glycoprotein 35-55(MOG35-55).Mice were randomly divided into EAE group and AS-Ⅳ group(n=8 per group).EAE group received intraperitoneal injection of PBS on the 3rd day post-immunization,while AS-Ⅳ group was administered AS-Ⅳ at a dosage of 30mg/(kg.d)once daily,0.2 ml per injection,for 25 consecutive days.On the 28th day post-immunization,the expression levels of growth-associated protein 43(GAP-43),neuronal core antigen(NeuN),microtubule associated protein 2(MAP-2),glial fibroacidic protein(GFAP),and Iba1 in the spinal cord were detected using immunofluorescence assay.Real-time fluorescence quantitative PCR(qRT-PCR)was conducted to detect mRNA expression levels of GAP-43,Nogo-A,and Nogo receptor(NgR)genes.Western blotting was utilized to determine the expression levels of GAP-43,Nogo-A,ROCK2,phosphorylated myosin phosphatase(p-MYPT1),B-lymphoblastoma-2(Bcl-2),and Bcl-2 associated X protein(Bax).Results Compared with EAE group,AS-Ⅳ treatment significantly reduced the positive cell expression rates of Iba1 microglia and GFAP astrocyte in spinal cord(P<0.01 and P<0.001,respectively),while it also increased the positive expression rates of NeuN and MAP-2(P<0.001 and P<0.05,respectively).The treatment also upregulated the expression level of anti-apoptotic factor Bcl-2(P<0.001)and downregulated the expression level of pro-apoptotic factor Bax(P<0.05),leading to an increase in Bcl-2/Bax ratio(P<0.05).Furthermore,AS-Ⅳ enhanced the expression of GAP-43 protein(P<0.05)and decreased the mRNA expression levels of neuroregeneration inhibitor Nogo receptor(NgR)and ROCK2 gene(P<0.001,P<0.05,respectively);as well as decreased the expression levels of Nogo-A,ROCK2 and p-MYPT1 proteins(P<0.05,P<0.001).Conclusion AS-Ⅳ may inhibit the activation of microglia and astrocytes and neuronal apoptosis in EAE mice by inhibiting Nogo-A and downstream pathway ROCK 2,thereby promoting the expression of GAP-43,NeuN and MAP-2,alleviating neuronal damage,and facilitating axon repair and regeneration.
4.Infectivity of hepatitis A virus cell-adapted strain in type Ⅰ interferon receptor-deficient mice
Min GAO ; Qingqing MA ; Jian LI ; Ruotong RUAN ; Chengfeng QIN ; Hui ZHAO
Military Medical Sciences 2024;48(9):650-655
Objective To investigate the infectivity of hepatitis A virus(HAV)cell-adapted strain in a type Ⅰ interferon receptor-deficient mouse model.Methods The biological charateristics of HM175/18f were identified,including the viral protein expression and viral proliferation by indirect immunofluorescence,Western blot and real-time quantitative RT-PCR in vitro.Then,type Ⅰ interferon receptor-deficient A129 mice were infected with HM175/18f via intravenous injection.The viral RNA load in serum,feces and liver tissues of infected mice were detected to determine the replication of HAV in vivo.The level of serum alanine aminotransferase(ALT)and HE staining of liver tissues were used to evaluate liver injury.Additionally,the dynamic changes of HAV-specific IgG antibody was detected to assess the humoral immune response induced by HM175/18f.Results A129 mice infected with HM175/18f did not show obvious clinical symptoms,nor was the ALT level significantly elevated.However,viral RNA persisted in the liver tissue of infected mice until 42 days after infection.There was focal infiltration of lymphocytes and neutrophils in the liver tissue of infected mice,but no focal necrosis was observed.More importantly,HM175/18f infection caused significant viremia and sustained fecal virus shedding.In addition,HM175/18f induced a significant HAV-specific humoral immune response in A129 mice.Conclusion Our study has revealed the infectivity of HAV cell-adapted strain HM175/18f in type Ⅰ interferon receptor-deficient mice,and identified the attenuated characteristics of HM175/18f,which not only contributes to our understanding of the pathogenesis of HAV,but also expand the applications of a type Ⅰ interferon receptor-deficient mouse model in the study of hepatitis A.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Treatment of male immune infertility by traditional Chinese medicine:A meta-analysis
Chun-Mei FAN ; Si-Qi MA ; Ke-Fan DING ; Yi-Jian YANG ; Xin-Bang WEN ; Zi-Qin ZHAO ; Shu-Hui CHEN ; Guo-Zheng QIN
National Journal of Andrology 2024;30(6):547-563
Objective:To evaluate the efficacy and safety of traditional Chinese medicine(TCM)in the treatment of male im-mune infertility(MII)by meta-analysis.Methods:We retrieved randomized controlled trial(RCT)on the treatment of male im-mune infertility with traditional Chinese medicine from the databases of WanFang,Chinese Biomedical Literature,Cochrane Library,Weipu,PubMed and CNKI,and performed methodological quality assessment of the RCTs identified and statistical analysis and evalua-tion of the publication bias using the RevMan5.4 software.Results:Totally,25 RCTs(2 563 cases)were included in this study.Compared with Western medicine alone in the treatment of MII,TCM achieved a significantly higher total effectiveness rate(OR=6.35,95% CI:4.96-8.13,P<0.000 01),negative conversion rate of seminal plasma anti-sperm antibodies(OR=4.52,95% CI:2.72-7.51,P<0.000 01),negative rate of serum anti-sperm antibodies(OR=2.98,95% CI:2.23-3.96,P<0.000 01),sperm concentration(MD=15.56,95% CI:11.32-19.79,P<0.000 01),grade a sperm motility(MD=3.85,95% CI:1.91-5.79,P=0.000 01),grade a+b sperm motility(MD=13.77,95% CI:7.06-20.48,P<0.000 1),sperm viability(MD=10.32,95% CI:6.78-13.86,P<0.000 01)and pregnancy rate(OR=3.53,95% CI:2.68-4.63,P<0.000 01),but a lower rate of adverse reactions(OR=0.06,95% CI:0.01-0.23,P<0.000 01).There was no statistically significant difference in the percentage of morphologically abnormal sperm between TCM and Western medicine alone in the treatment of MII(MD=-7.53,95% CI:-15.50-0.44,P=0.06).Conclusion:TCM has a definite effectiveness and high safe in the treatment of male immune infertility.
7.Chemical constituents of lignans and terpenoids from Alangium chinense subsp.pauciflorum
Jian-Ping YANG ; Ting YANG ; Min-Hui ZHU ; Xue MA ; Yuan LU ; Jia SUN ; Yong-Jun LI
Chinese Traditional Patent Medicine 2024;46(11):3683-3691
AIM To study the lignans and terpenoids from Alangium chinense(Lour.)Harms subsp.pauciflorum Fang.METHODS The 70%ethanol extract was isolated and purified by various column chromatography,then the structures of obtained compounds were identified by physicochemical properties and spectral data.RESULTS Twenty-four compounds were isolated and identified and identified as(+)-pinoresinol)(1),medioresinol(2),syringaresinol(3),dehydrodiconifery alcohol-9′-β-D-glucopyranoside(4),7,9,9′-trihydroxy-3,3′-dimethoxy-8-O-4′-neolignan-4-O-β-D-glucopyranoside(5),citrusin B(6),dihydrodehydrodiconiferyl alcohol-4-O-β-D-glucopyranosides(7),5-methoxy-(+)-isolariciresinol(8),rel-(7R,8S)-3,3′,5-trimethoxy-4′,7-epoxy-8,5′-neolignan-4,9,9′-triol-9-β-D-glucopyranoside(9),(+)-lyoniresinol-3α-O-β-D-glucopyranoside(10),longifloroside B(11),(7S,8R)-1-[4-O-(β-D-glucopyranosyl)-3-methoxyphenyl]-2-[4-(3-hydroxypropyl)-2,6-dimethoxyphenoxy]-1,3-propanediol(12),(7R,8S)-4,9,9′-trihydroxyl-3-methoxyl-7,8-dihydrobenzofuran-1′-propylneolignan-3′-O-β-D-glucopyranoside(13),(7S,8R)-4,9,9′-trihydroxy-3,3′,5-trimethoxy-8,4′-oxy-neolignan-4-O-β-D-glucopyranoside(14),cedrusin-4-O-β-D-glucopyranoside(15),2,6,2′,6′-tetramethoxy-4,4′-bis(2,3-epoxy-1-hydroxypropyl)biphenyl(16),3-oxo-11α,12α-epoxy-olean-28,13β-olide(17),mansonone E(18),mansonone G(19),mansonone H(20),roseoside(21),bullatantriol(22),3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranosyl pomolic acid(23),Hederagenin(24).CONCLUSION Compounds 1-16 are lignans,and 17-24 are terpenoids.Compounds 3-9,11-17,22-24 are isolated from Alangium genus for the first time;compounds 1,2,10,18-21 are first isolated from this plant.
8.The use of bronchial occlusion test in a preterm infant with severe bronchopulmonary dysplasia complicated by severe lobar emphysema
Hui-Juan LIU ; Rui-Lian GUAN ; Xin QIN ; Huai-Zhen WANG ; Gao-Long ZHANG ; Jian-Bin LI ; Li MA ; Le LI ; Lian-Wei LU ; Yi SUN ; Hua-Yan ZHANG
Chinese Journal of Contemporary Pediatrics 2024;26(6):659-664
In infants with severe bronchopulmonary dysplasia(sBPD),severe pulmonary lobar emphysema may occur as a complication,contributing to significant impairment in ventilation.Clinical management of these infants is extremely challenging and some may require lobectomy to improve ventilation.However,prior to the lobectomy,it is very difficult to assess whether the remaining lung parenchyma would be able to sustain adequate ventilation postoperatively.In addition,preoperative planning and perioperative management are also quite challenging in these patients.This paper reports the utility of selective bronchial occlusion in assessing the safety and efficacy of lobectomy in a case of sBPD complicated by severe right upper lobar emphysema.Since infants with sBPD already have poor lung development and significant lung injury,lobectomy should be viewed as a non-traditional therapy and be carried out with extreme caution.Selective bronchial occlusion test can be an effective tool in assessing the risks and benefits of lobectomy in cases with sBPD and lobar emphysema.However,given the technical difficulty,successful application of this technique requires close collaboration of an experienced interdisciplinary team.
9.Comparative study of acellular dermal matrix and pedicle buccal fat pad flap in repairing buccal soft tissue defect
Hui-Min LI ; Qing-Ling GAO ; Jian-Jun JIAO ; Chao MA ; Hui LU
Journal of Regional Anatomy and Operative Surgery 2024;33(9):825-828
Objective To compare the efficacies of acellular dermal matrix(ADM)and pedicle buccal fat pad flap(PBFPF)in repairing buccal soft tissue defect.Methods A total of 84 patients undergoing repair of buccal mucosa defect in our hospital were selected and randomly divided into the ADM group and PBFPF group,with 42 cases in each group.Patients of the ADM group were repaired tby ADM,while patients of the the PBFPF group were repaired by PBFPF.The repair time,oral feeding time,hospital stay were compared between the two groups.The maximum opening degree of patients before surgery,and 1 week,1 month and 6 months after surgery was measured and compared.The effective rate of repair and the occurrence of complications of patients were recorded.The improvement of oral and maxillofa-cial function(including swallowing function,language function and masticatory function)after surgery of patients were observed.Results There was no significant difference in the repair time,oral feeding time,hospital stay,total incidence of complications,postoperative swallowing function or postoperative language function between the two groups(P>0.05).The maximum opening degree had no significant difference between the ADM group and PBFPF group or in the interaction effect between groups and time points(P>0.05),but had signifi-cant difference in the comparison of time points(P<0.05).The effective rate of repair for patients with defect area of>13~20 cm2 in the PBFPF group was higher than that in the ADM group(P<0.05).The masticatory function of patients in the PBFPF group was better than that in the ADM group(P<0.05).Conclusion Both PBFPF and ADM have advantages in the repair of oral mucosal tissue defects,and PBFPF has better repair effect in patients with larger mucosal defect area(>13~20 cm2).
10.Surveillance of antifungal resistance in clinical isolates of Candida spp.in East China Invasive Fungal Infection Group from 2018 to 2022
Dongjiang WANG ; Wenjuan WU ; Jian GUO ; Min ZHANG ; Huiping LIN ; Feifei WAN ; Xiaobo MA ; Yueting LI ; Jia LI ; Huiqiong JIA ; Lingbing ZENG ; Xiuhai LU ; Yan JIN ; Jinfeng CAI ; Wei LI ; Zhimin BAI ; Yongqin WU ; Hui DING ; Zhongxian LIAO ; Gen LI ; Hui ZHANG ; Hongwei MENG ; Changzi DENG ; Feng CHEN ; Na JIANG ; Jie QIN ; Guoping DONG ; Jinghua ZHANG ; Wei XI ; Haomin ZHANG ; Rong TANG ; Li LI ; Suzhen WANG ; Fen PAN ; Jing GAO ; Lu JIANG ; Hua FANG ; Zhilan LI ; Yiqun YUAN ; Guoqing WANG ; Yuanxia WANG ; Liping WANG
Chinese Journal of Infection and Chemotherapy 2024;24(4):402-409
Objective To monitor the antifungal resistance of clinical isolates of Candida spp.in the East China region.Methods MALDI-TOF MS or molecular methods were used to re-identify the strains collected from January 2018 to December 2022.Antifungal susceptibility testing was performed using the broth microdilution method.The susceptibility test results were interpreted according to the breakpoints of 2022 Clinical and Laboratory Standards Institute(CLSI)documents M27 M44s-Ed3 and M57s-Ed4.Results A total of 3 026 strains of Candida were collected,65.33%of which were isolated from sterile body sites,mainly from blood(38.86%)and pleural effusion/ascites(10.21%).The predominant species of Candida were Candida albicans(44.51%),followed by Candida parapsilosis complex(19.46%),Candida tropicalis(13.98%),Candida glabrata(10.34%),and other Candida species(0.79%).Candida albicans showed overall high susceptibility rates to the 10 antifungal drugs tested(the lowest rate being 93.62%).Only 2.97%of the strains showed dose-dependent susceptibility(SDD)to fluconazole.Candida parapsilosis complex had a SDD rate of 2.61%and a resistance rate of 9.42%to fluconazole,and susceptibility rates above 90%to other drugs.Candida glabrata had a SDD rate of 92.01%and a resistance rate of 7.99%to fluconazole,resistance rates of 32.27%and 48.24%to posaconazole and voriconazole non-wild-type strains(NWT),respectively,and susceptibility rates above 90%to other drugs.Candida tropicalis had resistance rates of 29.55%and 26.24%to fluconazole and voriconazole,respectively,resistance rates of 76.60%and 21.99%to posaconazole and echinocandins non-wild-type strains(NWT),and a resistance rate of 2.36%to echinocandins.Conclusions The prevalence and species distribution of Candida spp.in the East China region are consistent with previous domestic and international reports.Candida glabrata exhibits certain degree of resistance to fluconazole,while Candida tropicalis demonstrates higher resistance to triazole drugs.Additionally,echinocandins resistance has emerged in Candida albicans,Candida glabrata,Candida tropicalis,and Candida parapsilosis.


Result Analysis
Print
Save
E-mail