1.Expert consensus on the positioning of the "Three-in-One" Registration and Evaluation Evidence System and the value of orientation of the "personal experience"
Qi WANG ; Yongyan WANG ; Wei XIAO ; Jinzhou TIAN ; Shilin CHEN ; Liguo ZHU ; Guangrong SUN ; Daning ZHANG ; Daihan ZHOU ; Guoqiang MEI ; Baofan SHEN ; Qingguo WANG ; Xixing WANG ; Zheng NAN ; Mingxiang HAN ; Yue GAO ; Xiaohe XIAO ; Xiaobo SUN ; Kaiwen HU ; Liqun JIA ; Li FENG ; Chengyu WU ; Xia DING
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):445-450
Traditional Chinese Medicine (TCM), as a treasure of the Chinese nation, plays a significant role in maintaining public health. In 2019, the Central Committee of the Communist Party of China and the State Council proposed for the first time the establishment of a TCM registration and evaluation evidence system that integrates TCM theory, "personal experience" and clinical trials (referred to as the "Three-in-One" System) to promote the inheritance and innovation of TCM. Subsequently, the National Medical Products Administration issued several guiding principles to advance the improvement and implementation of this system. Owing to the complexity of its implementation, there are still differing understandings within the TCM industry regarding the positioning of the "Three-in-One" Registration and Evaluation Evidence System, as well as the connotation and value orientation of the "personal experience." To address this, Academician WANG Qi, President of the TCM Association, China International Exchange and Promotion Association for Medical and Healthcare and TCM master, led a group of academicians, TCM masters, TCM pharmacology experts and clinical TCM experts to convene a "Seminar on Promoting the Implementation of the ′Three-in-One′ Registration and Evaluation Evidence System for Chinese Medicinals." Through extensive discussions, an expert consensus was formed, clarifying the different roles of the TCM theory, "personal experience" and clinical trials within the system. It was further emphasized that the "personal experience" is the core of this system, and its data should be derived from clinical practice scenarios. In the future, the improvement of this system will require collaborative efforts across multiple fields to promote the high-quality development of the Chinese medicinal industry.
2.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
3.The Role of Prefrontal Cortex in Social Behavior
Gan-Jiang WEI ; Ling WANG ; Jing-Nan ZHU ; Xiao WANG ; Yu-Ran ZANG ; Chen-Guang ZHENG ; Jia-Jia YANG ; Dong MING
Progress in Biochemistry and Biophysics 2024;51(1):82-93
Social behavior is extremely important for the physical and mental health of individuals, their growth and development, and for social development. Social behavioral disorders have become a typical clinical representation of a variety of psychiatric disorders and have serious adverse effects on the development of individuals. The prefrontal cortex, as one of the key areas responsible for social behavior, involves in many advanced brain functions such as social behavior, emotion, and decision-making. The neural activity of prefrontal cortex has a major impact on the performance of social behavior. Numerous studies demonstrate that neurons and glial cells can regulate certain social behaviors by themselves or the interaction which we called neural microcircuits; and the collaboration with other brain regions also regulates different types of social behaviors. The prefrontal cortex (PFC)-thalamus projections mainly influence social dominance and social preference; the PFC-amygdala projections play a key role in fear behavior, emotional behavior, social exploration, and social identification; and the PFC-nucleus accumbens projections mainly involve social preference, social memory, social cognition, and spatial-social associative learning. Based on the above neural mechanism, many studies have focused on applying the non-invasive neurostimulation to social deficit-related symptoms, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES) and focused ultrasound stimulation (FUS). Our previous study also investigated that repetitive transcranial magnetic stimulation can improve the social behavior of mice and low-intensity focused ultrasound ameliorated the social avoidance behavior of mice by enhancing neuronal activity in the prefrontal cortex. In this review, we summarize the relationship between neurons, glial cells, brain projection and social behavior in the prefrontal cortex, and systematically show the role of the prefrontal cortex in the regulation of social behavior. We hope our summarization will provide a reference for the neural mechanism and effective treatment of social disorders.
4.Study on the characteristics of lymphocyte-specfic protein-tyrosine kinase methylation in the peripheral blood circulation of patients with rheumatoid arthritis
Lingxia XU ; Cen CHANG ; Ping JIANG ; Kai WEI ; Jia′nan ZHAO ; Yixin ZHENG ; Yu SHAN ; Yiming SHI ; Hua Ye JIN ; Yi SHEN ; Shicheng GUO ; Dongyi HE ; Jia LIU
Chinese Journal of Rheumatology 2024;28(3):155-161
Objective:To analyze the methylation characteristics of the lymphocyte-specific protein-tyrosine kinase (LCK) promoter region in the peripheral blood circulation of rheumatoid arthritis (RA) patients and its correlation with clinical indicators.Methods:Targeted methylation sequencing was used to compare the methylation levels of 7 CpG sites in the LCK promoter region in the peripheral blood of RA patients with healthy controls (HC) and osteoarthritis (OA) patients. Correlation analysis and ROC curve construction were performed with clinical information.Results:Non-parametric tests revealed that compared with HC [0.53(0.50, 0.57)] and OA patients [0.59(0.54, 0.62), H=47.17, P<0.001], RA patients [0.63(0.59, 0.68)] exhibited an overall increase in methylation levels. Simultaneously, when compared with the HC group [0.38(0.35, 0.41), 0.59(0.55, 0.63), 0.60(0.55, 0.64), 0.59(0.55, 0.63), 0.58(0.53, 0.62), 0.45(0.43, 0.49), 0.57(0.54, 0.61)], the RA group [0.46(0.42, 0.49), 0.70(0.65, 0.75), 0.70(0.66, 0.76), 0.70(0.65, 0.75), 0.69(0.64, 0.74), 0.55(0.51, 0.59), 0.68(0.63, 0.73)] showed a significant elevation in methylation levels at CpG sites cg05350315_60, cg05350315_80, cg05350315_95, cg05350315_101, cg05350315_104, cg05350315_128, and cg05350315_142, with statistically significant differences ( Z=-5.63, -5.89, -5.91, -5.89, -5.98, -5.95, -5.95, all P<0.001). Compared with the OA group [0.65(0.59, 0.69), 0.65(0.60, 0.69), 0.64(0.58, 0.68), 0.50(0.45, 0.54), 0.63(0.58, 0.67)], the RA group [0.70(0.66, 0.76), 0.70(0.65, 0.75), 0.69(0.64, 0.74), 0.55(0.51, 0.59), 0.68(0.63, 0.73)] exhibited a significant increase in methylation levels at CpG sites cg05350315_95, cg05350315_101, cg05350315_104, cg05350315_128, and cg05350315_142, with statistically significant differences ( Z=-3.56, -3.52, -3.60, -3.67, -3.62; P=0.036, 0.042, 0.031, 0.030, 0.030). Furthermore, Pearson correlation coefficient analysis revealed a positive correlation between the overall methylation level in this region and C-reactive protein (CRP) ( r=0.19, P=0.004) and erythrocyte sedimentation rate ( r=0.14, P=0.035). The overall methylation level of the LCK promoter region in the CRP (low) group [0.63 (0.58, 0.68)] was higher than that in the CRP (high) group [0.65(0.61, 0.70)], with statistically significant differences ( Z=2.60, P=0.009). Finally, by constru-cting a ROC curve, the discriminatory efficacy of peripheral blood LCK promoter region methylation levels for identifying RA patients, especially seronegative RA patients, from HC and OA groups was validated, with an AUC value of 0.78 (95% CI: 0.63, 0.93). Conclusion:This study provides insights into the methylation status and methylation haplotype patterns of the LCK promoter region in the peripheral blood of RA patients. The overall methylation level in this region is positively correlated with the level of inflammation and can be used to differentiate seronegative RA patients from the HC and OA patients.
5.Full-length transcriptome sequencing and bioinformatics analysis of Polygonatum kingianum
Qi MI ; Yan-li ZHAO ; Ping XU ; Meng-wen YU ; Xuan ZHANG ; Zhen-hua TU ; Chun-hua LI ; Guo-wei ZHENG ; Jia CHEN
Acta Pharmaceutica Sinica 2024;59(6):1864-1872
The purpose of this study was to enrich the genomic information and provide a basis for further development and utilization of
6.Regulation Mechanism of Occludin Function and Factors Affecting Its Expression
Shi-Jia ZHANG ; Juan-Xia ZHENG ; Cheng-Wei WANG
Progress in Biochemistry and Biophysics 2024;51(11):2832-2844
Tight-junction (TJ) is a complex supramolecular entity composed of complete membrane proteins, membranes and soluble cytoplasmic proteins, which is distributed in almost all barrier structures in the body. It can maintain the polarity of epithelial cells, close the intercellular space and prevent the overflow of materials in the epithelial space, and is a highly dynamic signaling entity. Occludin is one of the most representative members of TJ proteins, mainly responsible for sealing intercellular connections, maintaining intercellular permeability, and participating in maintaining the integrity of vascular endothelium. The integrity of occludin is related to the integrity of TJ, and the function of occludin is often associated with the barrier properties of various tissues, and the abnormal expression of occludin is related to the occurrence and development of various diseases. Occludin contains abundant Ser and Thr residues and has multiple phosphorylation sites. Phosphorylation is necessary for the combination of occludin and TJ, which can regulate the location of occludin, regulate the expression of occludin, and enhance the permeability and barrier function of TJ. Therefore, phosphorylation regulation is a mechanism that cannot be ignored in the regulation of occludin function. Occludin also interacts with many other proteins, such as co-forming the cytoskeleton with ZO-1, and is regulated by a variety of transcription factors. Studies have confirmed that in pathological conditions, a variety of signaling pathways can disrupt the integrity of cell barrier by regulating the expression and distribution of occludin. Myosin light chain kinase (MLCK) signal transduction pathway is one of the important ways to regulate the structure and function of TJ. It influences the expression of occludin by altering the cytoskeleton. MLCK mainly uses the phosphorylation of myosin light chain (MLC) as a medium to promote actin contraction, secondary decomposition of tightly binding proteins, resulting in increased or changed cellular barrier permeability, and increased MLC phosphorylation is also a biochemical marker of actomyosin contraction. Activation of MLCK causes Thr18 and Ser19 phosphorylation of MLC, which promotes the assembly of myosin II into myosin fibers and activates the hydrolysis of ATP, which relaxes the intercellular connections and reduces the ability of upper cortex to resist external invaders. Protein kinase C (PKC) plays an important role in the regulation of tightly connected signaling molecules, affecting the dynamic changes of paracellular permeability. PKC pathway is a key link in many cell signal transduction pathways, which influences all aspects of cell activities by catalyzing Ser/Thr residues phosphorylation of membrane proteins and many enzyme proteins. After PKC activation, it can regulate cellular barrier function by phosphorylating occludin and inducing its redistribution, and directly affect TJ action. Specific PKC subunits such as PKCα, PKCδ and PKCγ are activated and act on occludin molecules to promote their phosphorylation and cause the increase of TEER. The increase of TEER helps to regulate intercellular TJ and enhance the tightness of intercellular connections. Mitogen-activated protein kinases (MAPK) are usually activated by inflammatory factors, during which different signal transduction pathway subfamilies are formed to regulate occludin expression and affect tight junction and mucosal barrier functional integrity. Meanwhile, occludin is easily affected by various factors (such as cytokines and flora toxins), and abnormal expression of occludin will lead to structural damage of TJ and further damage of the intercellular barrier. Therefore, this paper summarizes the molecular structure and physiological function of occludin, and further summarizes its related signal regulation pathways and influencing factors, in order to provide theoretical support for maintaining the integrity of barrier function of occludin.
7.Analysis of design scheme and manufacturing process of laser-cut 316L medical catheters
Jia-Wei YU ; Zheng-Dong CHEN ; Xiao-Yan SHI
Chinese Medical Equipment Journal 2024;45(1):31-36
Objective To explore the manufacturing process and performance of laser-cut 316L medical catheters based on catheter designs with different cutting methods.Methods Two design schemes of straight and oblique spiral cut were proposed under interrupted spiral cut pattern.Straight and oblique spiral cut medical catheters were obtained with desired laser parameters,cutting speed and focus position of the laser cutting machine,oxygen as the auxiliary gas and nitric acid and hydrofluoric acid as the acid cleaning solution for the post-treatment process,which were compared with Direxion torqueable microcatheter and tested for traceability,torsion control and tensile strength.Results Laser-cut 316L medical catheters were less likely to hurt blood vessels for its advantages over Direxion torqueable microcatheter in surface brightness and roundness of grooved edges,while Direxion torqueable microcatheter behaved better in intensity and width uniformity of grooves and regularity of semi circles at ends of grooves.Straight spiral cut medical catheters had the traceability,torsion control and tensile strength increased by 50%,22%and 33%respectively when compared with oblique spiral cut catheters.Conclusion Laser cutting parameters and post-treatment process are the main factors affecting the appearance and size of laser cut medical catheters,and also of importance for improving the qualified rate of product processing and assembly.The catheter cutting design scheme is also a key element influencing the physical properties of medical catheters.[Chinese Medical Equipment Journal,2024,45(1):31-36]
8.Neoflavonoids from Dalbergia cochinchinensis and their anti-hypoxia/reoxygenation injury activities on H9c2 myocardial cells
Jia-Hui REN ; Qi-Wan ZHENG ; Xiao-Wei MENG ; Yan PANG ; Lan-Ying CHEN ; Rong-Hua LIU
Chinese Traditional Patent Medicine 2024;46(1):126-132
AIM To study the neoflavonoids from Dalbergia cochinchinensis Pierre ex Laness and their anti-hypoxia/reoxygenation injury activities on H9c2 myocardial cells.METHODS The 70%ethanol extract from D.cochinchinensis was isolated and purified by silica gel,Sephadex LH-20 and reverse-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.The CCK-8 method was used to detect their activities on H9c2 cells and protective effects on hypoxia-reoxygenation injury of H9c2 cells,and their structure-activity relationship was analyzed.RESULTS Twelve compounds were isolated and identified as latifolin(1),5-O-methyllatifolin(2),mimosifoliol(3),5-O-methydalbergiphenol(4),dalbergiphenol(5),cearoin(6),2,4-dihydroxy-5-methoxy-benzophenone(7),2-hydroxy-4,5-dimethoxybenzophenone(8),melannoin(9),2,2′,5-trihydroxy-4-methoxybenzophenone(10),dalbergin(11),4-methoxydalbergione(12).The dalbergiphenols and dalbergins had little toxicity to H9c2 cells,and dalbergiphenols had strong activity against hypoxia-reoxygenation injury of H9c2 cells.CONCLUSION Compound 8 is a new natural product.Compounds 4,9 are isolated from this plant for the first time.Dalbergiphenols may be the main neoflavonoids against hypoxia-reoxygenation injury of H9c2 cells.
9.Hepatic T cell subtypes and functional analysis among alveolar echinococcosis patients using single-cell RNA sequencing
Si CHEN ; Xiangqian WANG ; Wanzhong JIA ; Qigang CAI ; Xueyong ZHANG ; Qiang ZHANG ; Haibo ZHENG ; Linghong ZHU ; Bing LI ; Wei WANG ; Xiumin HAN
Chinese Journal of Schistosomiasis Control 2024;36(5):481-493
Objective To investigate T cell subtypes and their functions in liver immune microenvironments among patients with alveolar echinococcosis (AE) using single-cell RNA sequencing (scRNA-seq). Methods Four AE patients that were admitted to Qinghai Provincial People’s Hospital in 2023 for hepatic surgery for the first time were enrolled, and liver specimens were sampled 1 cm (peri-lesion, PL group) and > 5 cm from AE lesions (distal lesion, DL group) among each patient. Finally, a total of eight liver specimens were sampled from four AE patients for scRNA-seq analysis. Genome and transcriptome data of liver specimens were processed using the software Cell Ranger and R package. Differentially expressed genes (DEGs) and their biological functions were analyzed using gene ontology (GO) enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and the primary intercellular communication patterns and interaction mechanisms were identified among T cell subtypes in liver specimens using the CellChat package. In addition, the developmental stages of T cells were subjected to trajectory analysis with the monocle package to investigate the expression of genes associated with cell growth and tumor transformation, and to predict the developmental trajectories of T cells. Results All four AE patients were female, with a mean age of (25.00 ± 9.06) years, and there were three cases from Jiuzhi County, Golog Tibetan Autonomous Prefecture and one case from Chengduo County, Yushu Tibetan Autonomous Prefecture, Qinghai Province. The viability of single-cell samples from eight liver specimens was 90.41% to 96.33%, and a total of 81 763 cells were analyzed, with 19 cell types annotated. Of these cell types, 13 were immune cells (87.60%), and T cells (33.13%), neutrophils (15.40%), and natural killer cells (11.92%) were the three most common cell types. Re-clustering of 27 752 T cells and proliferative T cells identified 10 distinct T cell subtypes, with CD8+ cytotoxic T cells (23.43%), CD8+ naive T cells (12.80%), and CD4+ effector memory T cells (17.73%) as dominant cell types. The proportions of T helper 2 (Th2) cells (5.19% vs. 3.63%; χ2 = 38.35, P < 0.01) and CD4+ effector memory T cells (21.59% vs. 13.67%; χ2 = 244.70, P < 0.01) were significantly higher in liver specimens in the PL group than in the DL group, and the proportion of CD4+ helper T cells was significantly lower in the PL group than in the DL group (7.50% vs. 14.75%; χ2 = 330.52, P < 0.01). KEGG pathway analysis revealed that Th2 cells were significantly enriched in cell apoptosis and multiple cancer-associated pathways, and CD4+ effector memory T cells were significantly enriched in the regulation of cytokines and chronic inflammation, while CD4+ helper T cells were significantly enriched in immune responses regulation. Trajectory analysis of T cells showed that CD4+ helper T cells were at an earlier developmental stage relative to Th2 cells and CD4+ effector memory T cells, and the expression of inhibitor of DNA binding 3 (ID3), thioredoxin interacting protein (TXNIP), Bcl2-associated athanogene 3 (BAG3) and heat shock protein family B (small) member 1 (HSPB1) genes appeared a tendency towards a decline over time. Conclusions CD4+ effector memory T cells and CD8+ cytotoxic T cells are primary interacting cells in the liver specimens of AE patients. Reduced expression of Th2 cells and CD4+ helper T cells contributes to an inhibitory immune microenvironment, which promotes immune evasion by Echinococcus multilocularis, and Th2 cells are significantly enriched in multiple cancer-associated pathways, which may be linked to the invasive growth of E. multilocularis.
10.The social dilemma of gender identity and gender expression:case research on medical social workers'intervention in multidisciplinary joint diagnosis and treatment for transgender children and adolescents
Ying DONG ; Yongzhi LIU ; Feihong LUO ; Jia WEI ; Zhengnan SHI ; Xiangning KONG ; Yuxin HAO ; Ning YANG ; Zhangqian ZHENG ; Lili FU
Chinese Medical Ethics 2024;37(7):843-851
The transgender children and adolescents(TCAs)face serious social dilemmas in the process of gender identity and expression,which hinders this group from seeking reasonable and equal rights to survival and development.From the perspective of equal rights and the theoretical framework of social dilemma,by interviewing TCAs who seek help from medical social workers in a hospital's multi-disciplinary transgender clinic,this paper revealed that under the traditional system of"binary gender",TCAs lacked social inclusiveness and infrastructure,which led to the two major social dilemmas of"social traps"and"social barriers"encountered by this group in the process of gender expression and gender identity.Specifically,the social gender selection of TCAs often leads to collective irrational reactions and gender punishment,preventing their legal and effective medical services.To this end,the research team used critical methodology to construct a joint disciplinary diagnosis and treatment path for TCAs with the participation of medical social workers,as well as verified that the path has significant intervention effects in rationalizing the needs of TCAs and their families,alleviating their psychological pressure and social adaptation problems in the process of gender identity,fostering a diverse dialogue environment in their families,as well as enhancing their self-efficacy and social participation,to provide assistahce to the TCAs groups in social difficulties,assisting their rights and interests be included in the child-friendly indicator system,and improving the whole society's tolerance and understanding for TCAs group.


Result Analysis
Print
Save
E-mail