1.Daurisoline Inhibits Progression of Triple-Negative Breast Cancer by Regulating the γγ-Secretase/Notch Axis
Xiangyi ZHAN ; Xiaoyong CHEN ; Mei FENG ; Kuo YAO ; Kefan YANG ; Hui JIA
Biomolecules & Therapeutics 2025;33(2):331-343
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is challenging to treat and lacks targeted therapeutic drugs in the clinic. Natural active ingredients provide promising opportunities for discovering and developing targeted therapies for TNBC. This study investigated the effects of daurisoline on TNBC and elucidated its potential mechanisms. Using network pharmacology, a correlation was identified between daurisoline, derived from Menispermum dauricum, and breast cancer, particularly involving the Notch signaling pathway. The effects of daurisoline on the proliferation, migration, and apoptosis of MDA-MB-231 and MDA-MB-468 cells were evaluated in vitro. Additionally, the impact of daurisoline on the growth of MDA-MB-231 xenograft tumors in nude mice was assessed through in vivo experiments. Expression levels of Notch signaling pathway-related proteins, including Notch-1, NICD, PSEN-1, Bax, and Bcl-2, were examined using molecular docking and Western blotting to explore the underlying mechanisms of daurisoline’s anti-breast cancer effects. It was revealed that daurisoline could effectively inhibit the proliferation and migration of MDA-MB-231 and MDA-MB-468 cells and promote apoptosis. Furthermore, it significantly reduced the growth of subcutaneous tumors in nude mice. Notably, daurisoline could reduce the hydrolytic activity of γ-secretase by binding to the catalytic core PSEN-1, thereby inhibiting activation of the γ-secretase/Notch axis and contributing to its anti-TNBC effects.This study supported the development of naturally targeted drugs for TNBC and provided insights into the research on dibenzylisoquinoline alkaloids, such as daurisoline.
2.Daurisoline Inhibits Progression of Triple-Negative Breast Cancer by Regulating the γγ-Secretase/Notch Axis
Xiangyi ZHAN ; Xiaoyong CHEN ; Mei FENG ; Kuo YAO ; Kefan YANG ; Hui JIA
Biomolecules & Therapeutics 2025;33(2):331-343
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is challenging to treat and lacks targeted therapeutic drugs in the clinic. Natural active ingredients provide promising opportunities for discovering and developing targeted therapies for TNBC. This study investigated the effects of daurisoline on TNBC and elucidated its potential mechanisms. Using network pharmacology, a correlation was identified between daurisoline, derived from Menispermum dauricum, and breast cancer, particularly involving the Notch signaling pathway. The effects of daurisoline on the proliferation, migration, and apoptosis of MDA-MB-231 and MDA-MB-468 cells were evaluated in vitro. Additionally, the impact of daurisoline on the growth of MDA-MB-231 xenograft tumors in nude mice was assessed through in vivo experiments. Expression levels of Notch signaling pathway-related proteins, including Notch-1, NICD, PSEN-1, Bax, and Bcl-2, were examined using molecular docking and Western blotting to explore the underlying mechanisms of daurisoline’s anti-breast cancer effects. It was revealed that daurisoline could effectively inhibit the proliferation and migration of MDA-MB-231 and MDA-MB-468 cells and promote apoptosis. Furthermore, it significantly reduced the growth of subcutaneous tumors in nude mice. Notably, daurisoline could reduce the hydrolytic activity of γ-secretase by binding to the catalytic core PSEN-1, thereby inhibiting activation of the γ-secretase/Notch axis and contributing to its anti-TNBC effects.This study supported the development of naturally targeted drugs for TNBC and provided insights into the research on dibenzylisoquinoline alkaloids, such as daurisoline.
3.Daurisoline Inhibits Progression of Triple-Negative Breast Cancer by Regulating the γγ-Secretase/Notch Axis
Xiangyi ZHAN ; Xiaoyong CHEN ; Mei FENG ; Kuo YAO ; Kefan YANG ; Hui JIA
Biomolecules & Therapeutics 2025;33(2):331-343
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is challenging to treat and lacks targeted therapeutic drugs in the clinic. Natural active ingredients provide promising opportunities for discovering and developing targeted therapies for TNBC. This study investigated the effects of daurisoline on TNBC and elucidated its potential mechanisms. Using network pharmacology, a correlation was identified between daurisoline, derived from Menispermum dauricum, and breast cancer, particularly involving the Notch signaling pathway. The effects of daurisoline on the proliferation, migration, and apoptosis of MDA-MB-231 and MDA-MB-468 cells were evaluated in vitro. Additionally, the impact of daurisoline on the growth of MDA-MB-231 xenograft tumors in nude mice was assessed through in vivo experiments. Expression levels of Notch signaling pathway-related proteins, including Notch-1, NICD, PSEN-1, Bax, and Bcl-2, were examined using molecular docking and Western blotting to explore the underlying mechanisms of daurisoline’s anti-breast cancer effects. It was revealed that daurisoline could effectively inhibit the proliferation and migration of MDA-MB-231 and MDA-MB-468 cells and promote apoptosis. Furthermore, it significantly reduced the growth of subcutaneous tumors in nude mice. Notably, daurisoline could reduce the hydrolytic activity of γ-secretase by binding to the catalytic core PSEN-1, thereby inhibiting activation of the γ-secretase/Notch axis and contributing to its anti-TNBC effects.This study supported the development of naturally targeted drugs for TNBC and provided insights into the research on dibenzylisoquinoline alkaloids, such as daurisoline.
4.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
5. Lycium barbarian seed oil activates Nrf2/ARE pathway to reduce oxidative damage in testis of subacute aging rats
Rui-Ying TIAN ; Wen-Xin MA ; Zi-Yu LIU ; Hui-Ming MA ; Sha-Sha XING ; Na HU ; Chang LIU ; Biao MA ; Jia-Yang LI ; Hu-Jun LIU ; Chang-Cai BAI ; Dong-Mei CHEN
Chinese Pharmacological Bulletin 2024;40(3):490-498
Aim To explore the effects of Lycium berry seed oil on Nrf2/ARE pathway and oxidative damage in testis of subacute aging rats. Methods Fifty out of 60 male SD rats, aged 8 weeks, were subcutaneously injected with 125 mg • kg"D-galactosidase in the neck for 8 weeks to establish a subacute senescent rat model. The presence of senescent cells was observed using P-galactosidase ((3-gal), while testicular morphology was examined using HE staining. Serum levels of testosterone (testosterone, T), follicle-stimulating hormone ( follicle stimulating hormone, FSH ) , luteinizing hormone ( luteinizing hormone, LH ) , superoxide dis-mutase ( superoxide dismutase, SOD ) , glutathione ( glutathione, GSH) and malondialdehyde ( malondial-dehyde, MDA) were measured through ELISA, and the expressions of factors related to aging, oxidative damage, and the Nrf2/ARE pathway were assessed via immunohistochemical analysis and Western blotting. Results After successfully identifying the model, the morphology of the testis was improved and the intervention of Lycium seed oil led to a down-regulation in the expression of [3-gal and -yH2AX. The serum levels of SOD, GSH, T, and FSH increased while MDA and LH decreased (P 0. 05) . Additionally, there was an up-regulated expression of Nrf2, GCLC, NQOl, and SOD2 proteins in testicular tissue ( P 0. 05 ) and nuclear expression of Nrf2 in sertoli cells. Conclusion Lycium barbarum seed oil may reduce oxidative damage in testes of subacute senescent rats by activating the Nrf2/ARE signaling pathway.
6.Effects of sodium acetate on lowering uric acid and renal protection in mice with hyperuricemic nephropathy
Xue-Man LIN ; Shi-Qi ZHONG ; Yong-Mei LI ; Xiao-Yi QIN ; He-Yang JIANG ; Jia-Xin ZHOU ; Jian-Xin PANG ; Ting WU
The Chinese Journal of Clinical Pharmacology 2024;40(15):2222-2226
Objective To investigate the renal protective effect and mechanism of sodium acetate(Ace)on hyperuricemic nephropathy(HN)in mice.Methods Uric acid nephropathy mice model was prepared by intraperitoneal injection of potassium oxonate combined with adenine gavage.Mice were divided into blank control group(0.9%NaCl+0.5%carboxymethyl cellulose sodium),Ace group(200 mmol·L-1 Ace+0.5%carboxymethyl cellulose sodium),model group(0.9%NaCl+350 mg·kg-1 potassium oxonate+70 mg·kg-1 adenine),and experimental group(based on model group with additional 200 mmol·L-1 Ace).Serum and urine uric acid(UA)and serum creatinine(SCr)levels were observed in each group.Real-time fluorescence quantitative reverse transcription-polymerase chain reaction(qRT-PCR)was used to detect the expression levels of kidney injury molecule-1(Kim-1)and anti-aging gene Klotho,renal fibrosis markers Collagen Ⅰ and Fibronectin,intestinal inflammation-related factors interleukin-1 β(IL-1 β),and mRNA expression levels of tight junction proteins Zo-1.Results The serum UA levels of blank control group,Ace group,model group,and experimental group mice were(259.52±24.40),(227.71±35.91),(604.06±73.55),and(496.24±30.16)μmol·L-1,respectively;SCr levels were(16.85±0.40),(16.18±0.94),(22.38±1.56),and(19.78±1.43)μmol·L-1;Kim-1 mRNA relative expression levels were 1.04±0.25,1.17±0.28,13.00±2.87,and 4.24±3.92;Klotho mRNA relative expression levels were 1.04±0.15,1.02±0.18,0.43±0.12,and 0.69±0.12;Collagen Ⅰ mRNA relative expression levels were 1.05±0.15,1.02±0.18,3.19±1.09,and 1.61±0.55;Fibronectin mRNA relative expression levels were 1.07±0.18,1.02±0.25,7.86±2.40,and 3.34±2.10;intestinal IL-1β mRNA relative expression levels were 1.00±0.01,1.01±0.03,2.55±0.63,and 1.21±0.28;intestinal Zo-1 mRNA relative expression levels were 1.00±0.07,1.07±0.09,0.54±0.20,and 0.92±0.17.The above indicators in blank control group compared with model group,and experimental group compared with model group,all showed statistically significant differences(P<0.05,P<0.01,P<0.001).Conclusion Sodium acetate can effectively reduce UA levels in HN mice,significantly improve renal injury and fibrosis,and its mechanism may be related to the improvement of intestinal inflammatory response and up-regulation of intestinal Zo-1/Occuludin pathway to reduce intestinal mucosal permeability.
7.Expression of brain-derived neurotrophic factor in hippocampal tissue of central obese mice induced by sodium glutamate
Peng-Juan CAO ; Jia-Yuan TANG ; Mei-Zi YANG ; Yuan-Yuan LI ; Li-Ting HUANG ; Wen-Wen MENG ; Yong-Jun JIN ; Jian-Xun MO
The Chinese Journal of Clinical Pharmacology 2024;40(15):2227-2230
Objective To explore whether the cognitive function of central obese mice is decreased by affecting the expression of brain-derived neurotrophic factor(BDNF)in hippocampus.Methods Healthy mice at the neonatal stage were divided into normal group and model group at random.To obtain the obese models,model group mice were injected at cervical subcutaneous with 10%L-monosodium glutamate(MSG;3 mg·g-1·d-1)for 5 days.The normal group was injected with the same dose of 0.9%NaCl.In addition,mice were removed according to the requirements.Finally,we got 8 mice in each group.The following parameters were compared:body weight,Lee's index and levels of the serum lipid.The BDNF expression levels in hippocampal tissue were measured using western blotting.Results At the 8th weekend,the body weight of the model and normal groups was(49.01±2.47)and(41.27±3.28)g;the Lee's indexes were(357.14±9.24)and(330.15±7.37)g1/3·cm-1;triglyceride levels were(1.37±0.52)and(0.73±0.31)mmol·L-1;total cholesterol levels were(2.98±0.18)and(1.98±0.30)mmol·L-1;low-density lipoprotein levels were(0.31±0.03)and(0.24±0.02)mmol·L-1;high-density lipoprotein levels were(2.70±0.15)and(1.98±0.40)mmol·L-1;the differences were statistically significant(P<0.05,P<0.01),which were consistent with the characteristics of the central obesity model.The BDNF protein expression levels in the hippocampus of the model and normal groups were 6.02 x 104±626.53 and 7.04 x 104±1 440.81,which has statistically significant(P<0.01).Conclusion The cognitive function of central obese mice may be decreased by down-regulating the expression of BDNF in hippocampus.
8.Development of the robotic digestive endoscope system and an experimental study on mechanistic model and living animals (with video)
Bingrong LIU ; Yili FU ; Kaipeng LIU ; Deliang LI ; Bo PAN ; Dan LIU ; Hao QIU ; Xiaocan JIA ; Jianping CHEN ; Jiyu ZHANG ; Mei WANG ; Fengdong LI ; Xiaopeng ZHANG ; Zongling KAN ; Jinghao LI ; Yuan GAO ; Min SU ; Quanqin XIE ; Jun YANG ; Yu LIU ; Lixia ZHAO
Chinese Journal of Digestive Endoscopy 2024;41(1):35-42
Objective:To develop a robotic digestive endoscope system (RDES) and to evaluate its feasibility, safety and control performance by experiments.Methods:The RDES was designed based on the master-slave control system, which consisted of 3 parts: the integrated endoscope, including a knob and button robotic control system integrated with a gastroscope; the robotic mechanical arm system, including the base and arm, as well as the endoscopic advance-retreat control device (force-feedback function was designed) and the endoscopic axial rotation control device; the control console, including a master manipulator and an image monitor. The operator sit far away from the endoscope and controlled the master manipulator to bend the end of the endoscope and to control advance, retract and rotation of the endoscope. The air supply, water supply, suction, figure fixing and motion scaling switching was realized by pressing buttons on the master manipulator. In the endoscopy experiments performed on live pigs, 5 physicians each were in the beginner and advanced groups. Each operator operated RDES and traditional endoscope (2 weeks interval) to perform porcine gastroscopy 6 times, comparing the examination time. In the experiment of endoscopic circle drawing on the inner wall of the simulated stomach model, each operator in the two groups operated RDES 1∶1 motion scaling, 5∶1 motion scaling and ordinary endoscope to complete endoscopic circle drawing 6 times, comparing the completion time, accuracy (i.e. trajectory deviation) and workload.Results:RDES was operated normally with good force feedback function. All porcine in vivo gastroscopies were successful, without mucosal injury, bleeding or perforation. In beginner and advanced groups, the examination time of both RDES and ordinary endoscopy tended to decrease as the number of operations increased, but the decrease in time was greater for operating RDES than for operating ordinary endoscope (beginner group P=0.033; advanced group P=0.023). In the beginner group, the operators operating RDES with 1∶1 motion scaling or 5∶1 motion scaling to complete endoscopic circle drawing had shorter completion time [1.68 (1.40, 2.17) min, 1.73 (1.47, 2.37) min VS 4.13 (2.27, 5.16) min, H=32.506, P<0.001], better trajectory deviation (0.50±0.11 mm, 0.46±0.11 mm VS 0.82±0.26 mm, F=38.999, P<0.001], and less workload [42.00 (30.00, 50.33) points, 43.33 (35.33, 54.00) points VS 52.67 (48.67, 63.33) points, H=20.056, P<0.001] than operating ordinary endoscope. In the advanced group, the operators operating RDES with 1∶1 or 5∶1 motion scaling to complete endoscopic circle drawing had longer completion time than operating ordinary endoscope [1.72 (1.37, 2.53) min, 1.57 (1.25, 2.58) min VS 1.15 (0.86, 1.58) min, H=13.233, P=0.001], but trajectory deviation [0.47 (0.13, 0.57) mm, 0.44 (0.39, 0.58) mm VS 0.52 (0.42, 0.59) mm, H=3.202, P=0.202] and workload (44.62±21.77 points, 41.24±12.57 points VS 44.71±17.92 points, F=0.369, P=0.693) were not different from those of the ordinary endoscope. Conclusion:The RDES enables remote control, greatly reducing the endoscopists' workload. Additionally, it gives full play to the cooperative motion function of the large and small endoscopic knobs, making the control more flexible. Finally, it increases motion scaling switching function to make the control of endoscope more flexible and more accurate. It is also easy for beginners to learn and master, and can shorten the training period. So it can provide the possibility of remote endoscopic control and fully automated robotic endoscope.
9.Exosome-Transmitted miR-224-5p Promotes Colorectal Cancer Cell Proliferation via Targeting ULK2 in p53-Dependent Manner
Mei Le YANG ; Qi ZHENG ; Jia Xiao LIU ; Xian Xian LI ; Lim VERONICA ; Qi CHEN ; Hua Zhong ZHAO ; Yang Shu WANG
Biomedical and Environmental Sciences 2024;37(1):71-84
Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer (CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR, respectively. Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p. The protein expressions of p53 and unc-51 like kinase 2 (ULK2) in CRC cells were detected by western blot. Flow cytometry was used to detect cell cycle and apoptosis. Cell proliferation was measured by CCK8 and EdU assay.Results The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage. CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner, and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine. Moreover, ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues. Interestingly, ULK2 inhibited CRC cell proliferation in a p53-dependent manner. Furthermore, exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.Conclusion Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC, which may offer promising targets for CRC prevention and therapy.
10.Effect of hand hygiene intervention on healthcare-associated case infection incidence from 2014 to 2022
Jia-Yan DING ; Rui-Hong SHEN ; Wen-Qin ZHOU ; Ya-Yun YUAN ; Mei HUANG ; Ya YANG ; Bing-Chao CAI ; Hai-Qun BAN ; Xiao-Fang FU
Chinese Journal of Infection Control 2024;23(2):208-213
Objective To observe the effect of multi-modal hand hygiene(HH)intervention on HH compliance,as well as the relationship between HH compliance and the healthcare-associated(HA)case infection incidence.Methods From 2014 to 2022,the infection control team in a tertiary first-class hospital implemented multi-modal HH intervention for health care workers(HCWs).The changing trend of HH monitoring data,the correlation be-tween HH compliance rate and HA case infection incidence were analyzed retrospectively.Results The consump-tion of HH products in the wards showed a stable upward trend;HH compliance rate increased from 64.98%in 2014 to 85.01%in 2022(P<0.001),and HA case infection incidence decreased from 1.21%to 0.83%(P<0.05).HH compliance rate was negatively correlated with HA case infection incidence(r=-0.369,P=0.027).HH compliance rates in different regions and job posts in each quarter were increased(P<0.001).For 5 different HH moments in each quarter,HH compliance rate fluctuated slightly before sterile manipulation and after touching patient;presented rising trend after touching surroundings around patient,and decreased before touching patient and after touching patient's body fluid since 2020(P<0.001).Conclusion Multi-modal HH intervention can im-prove the HH compliance of HCWs,improving their HH awareness is conducive to reducing HA case infection incidence.

Result Analysis
Print
Save
E-mail