1.The Role of Skeletal Muscle Satellite Cells-mediated Muscle Regeneration in The Treatment of Age-related Sarcopenia
Wei-Xiu JI ; Jia-Lin LÜ ; Yi-Fan MA ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2025;52(8):2033-2050
Age-related sarcopenia is a progressive, systemic skeletal muscle disorder associated with aging. It is primarily characterized by a significant decline in muscle mass, strength, and physical function, rather than being an inevitable consequence of normal aging. Despite ongoing research, there is still no globally unified consensus among physicians regarding the diagnostic criteria and clinical indicators of this condition. Nonetheless, regardless of the diagnostic standards applied, the prevalence of age-related sarcopenia remains alarmingly high. With the global population aging at an accelerating rate, its incidence is expected to rise further, posing a significant public health challenge. Age-related sarcopenia not only markedly increases the risk of physical disability but also profoundly affects patients’ quality of life, independence, and overall survival. As such, the development of effective prevention and treatment strategies to mitigate its dual burden on both societal and individual health has become an urgent and critical priority. Skeletal muscle regeneration, a vital physiological process for maintaining muscle health, is significantly impaired in age-related sarcopenia and is considered one of its primary underlying causes. Skeletal muscle satellite cells (MSCs), also known as muscle stem cells, play a pivotal role in generating new muscle fibers and maintaining muscle mass and function. A decline in both the number and functionality of MSCs is closely linked to the onset and progression of sarcopenia. This dysfunction is driven by alterations in intrinsic MSC mechanisms—such as Notch, Wnt/β‑Catenin, and mTOR signaling pathways—as well as changes in transcription factors and epigenetic modifications. Additionally, the MSC microenvironment, including both the direct niche formed by skeletal muscle fibers and their secreted cytokines, and the indirect niche composed of extracellular matrix proteins and various cell types, undergoes age-related changes. Mitochondrial dysfunction and chronic inflammation further contribute to MSC impairment, ultimately leading to the development of sarcopenia. Currently, there are no approved pharmacological treatments for age-related sarcopenia. Nutritional intervention and exercise remain the cornerstone of therapeutic strategies. Adequate protein intake, coupled with sufficient energy provision, is fundamental to both the prevention and treatment of this condition. Adjuvant therapies, such as dietary supplements and caloric restriction, offer additional therapeutic potential. Exercise promotes muscle regeneration and ameliorates sarcopenia by acting on MSCs through various mechanisms, including mechanical stress, myokine secretion, distant cytokine signaling, immune modulation, and epigenetic regulation. When combined with a structured exercise regimen, adequate protein intake has been shown to be particularly effective in preventing age-related sarcopenia. However, traditional interventions may be inadequate for patients with limited mobility, poor overall health, or advanced sarcopenia. Emerging therapeutic strategies—such as miRNA mimics or inhibitors, gut microbiota transplantation, and stem cell therapy—present promising new directions for MSC-based interventions. This review comprehensively examines recent advances in MSC-mediated muscle regeneration in age-related sarcopenia and systematically discusses therapeutic strategies targeting MSC regulation to enhance muscle mass and strength. The goal is to provide a theoretical foundation and identify future research directions for the prevention and treatment of this increasingly prevalent condition.
2. The molecular mechanism of spleen-strengthening and moisture-nourishing liver prescription in treatment of acute-on-chronic liver failure based on network pharmacology and experimental verification
Qi HUANG ; Wen-Feng MA ; Zhi-Yi HAN ; Jia-Ling SUN ; Wei ZHANG ; Xin-Feng SUN ; Jian -Ping CHEN ; Xiao-Zhou ZHOU ; Qi HUANG ; Wen-Feng MA ; Zhi-Yi HAN ; Jia-Ling SUN ; Wei ZHANG ; Xin-Feng SUN ; Xiao-Zhou ZHOU ; Jing LI ; Xiao-Zhou ZHOU ; Jian -Ping CHEN
Chinese Pharmacological Bulletin 2024;40(3):557-564
To explore the mechanism of spleen- were obtained for the treatment of acute-on-chronic livstrengthening and moisture-nourishing liver prescription er failure, and 244 intersecting target genes and 7 core (JPLSYGF) in the treatment of acute-on-chronic liver target genes were screened. Molecular docking showed failure using network pharmacology and the molecular that the core target genes AKT1, SRC, VEGFA, docking. Methods Relying on TCMSP and Gene- STAT3 , EGFR, MAPK3 , HRAS had good affinity with Cards and other databases, the relevant targets of JPL- quercetin, the main active component in the JPLSYGF in the treatment of acute-on-chronic liver failure SYGF, and had strong binding activity. In addition, in were obtained. String and Cytoscape were used to con- vivo tests verified that the JPLSYGF could reduce the struct PPI networks of targets, core targets were expression of HRAS, EGFR, STAT3 , SRC, and VEGscreened out, and DAVID was used for GO function FA, to delay the progression of acute-on-chronic liver annotation and KEGG pathway enrichment analysis. failure. Conclusions JPLSYGF may act on core tar- The main active ingredients of the traditional Chinese gets such as HRAS, EGFR, STAT3, SRC, VEGFA medicine compound formula for JPLSYGF were select- and so on, to achieve the effect of treating acute-oned with a bioavailability OB value of =Э 30% and a chronic liver failure. drug-like DL^O. 18 as the screening conditions, and.
3.Comparative study of drug susceptibility testing and whole genome test testing anti-tuberculosis drug resistance
Qiuju YU ; Jie HOU ; Yuling LIN ; Jia LUO ; Yi XIE ; Ying MA
International Journal of Laboratory Medicine 2024;45(3):378-384
Objective To compare the categorical agreement between drug susceptibility testing(DST)and whole genome sequencing(WGS)for the detection of drug resistance in Mycobacterium tuberculosis(MTB),and to explore the characteristics of WGS for MTB drug resistance detection.Methods A total of 71 MTB clinical isolates retained in West China Hospital of Sichuan University from 2018 to 2020 were included in this study.The MTB strains were tested for resistance to 14 anti-tuberculosis drugs,including Isoniazid(INH),Rifampicin(RIF),Rifabutin(RFB),Ethambutol(EMB),Streptomycin(SM),Moxifloxacin(MFX),Ofloxacin(OFX),Levofloxacin(LFX),Amikacin(AMK),Kanamycin(KAN),Capreomycin(CPM),Para-aminosalicylic acid(PAS),Ethionamide(ETH)and Clofazimine(CLO),using both DST(colorimetric redox indicator meth-od)and WGS methods.Kappa test was performed to analyze the results of drug resistance detection for both methods.Results Based on DST and WGS methods to detect anti-tuberculosis drug resistance in seventy-one MTB clinical isolates,the results showed that the agreement rate of RIF,RFB,SM,MFX,OFX and LFX ex-ceeded 90.00%,and the kappa values were all greater than 0.80,with near perfect agreement;The agreement rates of INH and EMB were 84.51%and 81.69%,and Kappa values were 0.68 and 0.54,respectively,with fair agreement.No more than two drug resistant MTB strains of AMK and KAN were detected by both meth-ods,and the resistance rate was less than 3.00%.The agreement rates of CPM,ETH,PAS,and CLO ranged from 61.97%to 91.55%,and the Kappa values were less than 0.40,with slight or fair agreement.Conclusion There are differences in the ability of WGS to detect resistance to various anti-tuberculosis drugs,and it is more effective in detecting resistance to six anti-tuberculosis drugs,including RIF,RFB,SM,MFX,OFX and LFX,while there are still certain differences in detecting resistance to other anti-tuberculosis drugs compared with DST.It is necessary to further clarify the detailed resistance mechanisms of relevant anti-tu-berculosis drugs and to explore the standardization of WGS for drug resistance detection.
4.Relationship between GLI1 expression and tumor immune infiltration and clinical prognosis of gastric cancer
Wen-Shuai ZHU ; Jing-Guo SUN ; Yi LU ; Mu-Hua LUAN ; Xiao-Li MA ; Yan-Fei JIA
Chinese Journal of Current Advances in General Surgery 2024;27(1):8-13
Objective:To investigate the correlation between the expression of GLI1 and im-mune invasion and clinical prognosis in gastric cancer.To study the effect of GLI1 expression on drug resistance in gastric cancer.Methods:The expression difference of GLI1 in gastric cancer and normal tissues was analyzed by using TCGA database,and the effect of clinical features and GLI1 gene ex-pression level on prognosis of patients with gastric cancer was analyzed.The correlation between GLI1 gene expression and tumor immune cell infiltration in gastric cancer tissues was analyzed to explore its influence on drug resistance of chemotherapy drugs and targeted drugs.Clinical samples were collect-ed to analyze the difference of GLI1 expression in gastric cancer and paracancer tissues.Results:The expression of GLI1 in gastric cancer tissues was 1.7 times that in normal tissues,and the overall sur-vival and disease-free survival of patients with high expression are shorter than those with low ex-pression(P<0.05).The interstitial score,immune score and abundance of immunoinfiltrating cells were higher in the high expression of GLI1 in gastric cancer tissues.High expression of GLI1 reduces drug sensitivity and is positively correlated with the expression of immune checkpoint markers PDCD1(P<0.05).GLI1 expression was significantly increased in patients with subdifferentiated gastric cancer.Conclusions:GLI1 expression is associated with the prognosis and immune infiltration of patients with gastric cancer,and it may lead to poor prognosis of patients by regulating chemotherapy resis-tance,which may be a potential therapeutic target and molecular marker for gastric cancer.
5.Expert consensus on the rational application of the biological clock in stomatology research
Kai YANG ; Moyi SUN ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Wei GUO ; Songsong ZHU ; Jia-Wei ZHENG ; Jie ZHANG ; Zhijun SUN ; Jie REN ; Jiawen ZHENG ; Xiaoqiang LV ; Hong TANG ; Dan CHEN ; Qing XI ; Xin HUANG ; Heming WU ; Hong MA ; Wei SHANG ; Jian MENG ; Jichen LI ; Chunjie LI ; Yi LI ; Ningbo ZHAO ; Xuemei TAN ; Yixin YANG ; Yadong WU ; Shilin YIN ; Zhiwei ZHANG
Journal of Practical Stomatology 2024;40(4):455-460
The biological clock(also known as the circadian rhythm)is the fundamental reliance for all organisms on Earth to adapt and survive in the Earth's rotation environment.Circadian rhythm is the most basic regulatory mechanism of life activities,and plays a key role in maintaining normal physiological and biochemical homeostasis,disease occurrence and treatment.Recent studies have shown that the biologi-cal clock plays an important role in the development of oral tissues and in the occurrence and treatment of oral diseases.Since there is cur-rently no guiding literature on the research methods of biological clock in stomatology,researchers mainly conduct research based on pub-lished references,which has led to controversy about the research methods of biological clock in stomatology,and there are many confusions about how to rationally apply the research methods of circadia rhythms.In view of this,this expert consensus summarizes the characteristics of the biological clock and analyzes the shortcomings of the current biological clock research in stomatology,and organizes relevant experts to summarize and recommend 10 principles as a reference for the rational implementation of the biological clock in stomatology research.
6.Clinical management of refractory prolactinomas:stone to sharpen yan,blunt for profit
Rui-Feng WANG ; Xiao-Zhen YE ; Jian-Rui LI ; Jing LI ; Jia-Liang LI ; Zi-Xiang CONG ; Yan LU ; Nan WU ; Yi-Feng GE ; Chi-Yuan MA ; Jia-Qing SHAO
Medical Journal of Chinese People's Liberation Army 2024;49(11):1237-1243
Refractory prolactinoma is the most common pituitary neuroendocrine tumor.Dopamine receptor agonists(DA)are the primary choice for drug treatment.Most patients with prolactinomas respond well to DA.However,a minority of prolactinomas patients still show resistance to DA.Although drug-resistant and refractory prolactinomas are rare in clinical practice,their treatment is extremely challenging.Even a combination of drug therapy,multiple surgeries,and radiotherapy may not yield satisfactory outcomes.Therefore,standardizing the diagnosis and treatment process and pathway for refractory prolactionmas and exploring more effective multidisciplinary collaborative treatment strategies are urgent problems to be solved.In the clinical management of refractory prolactinomas,it is often necessary to consider the patient's condition comprehensively,replace other types of DA,or consider surgery,radiotherapy,and immunotherapy,which requires multidisciplinary diagnosis and treatment.This review synthesizes the latest literature at home and abroad to systematically discuss the latest advances in drug therapy,surgery,and radiotherapy treatments for refractory prolactionmas,aiming to provide new ideas for basic research,clinical diagnosis and treatment.
7.Expression and mechanism of N6-methyladenosine methylation-related factors in the repair of skeletal muscle injury in mice
Jia-Yin LU ; Zhi-Chao YAO ; Xiao-Jing HAO ; Yi YAN ; Pei MA ; Hui-Ling ZHANG ; Hai-Dong WANG
Acta Anatomica Sinica 2024;55(3):285-294
Objective To investigate the dynamic expression with the time change of N6-methyladenosine(m6A)methylation-related factors in the repair process of skeletal muscle injury and its mechanism in the inflammatory response of macrophage in the injure process.Methods In vivo mice models of BaCl2 injury in the gastrocnemius were established.Four mice per group in the control group and injury group.Gastrocnemius tissues were harvested at day 1,3,5,7,and 9 after injury for experiments.Primary gastrocnemius muscle tissue cells,muscle satellite cells,muscle cells,and cell line C2C12 cells were treated with dexamethasone(DEX,50 μmol/L)to mimic injury.Lipopolysaccharide(LPS,100 μg/L)induced RAW264.7 cell lines to mimic the inflammatory response after skeletal muscle injury,and STM2457(30 μmol/L)was added to inhibit the effect of methyltransferase 3(Mettl3)before LPS treatment.The expression of m6A methylation-related factors(Writers,Erasers,Readers)and inflammation factors were detected by Real-time PCR and Western blotting.Results The muscle fibers were dissolved and then gradually repaired with the extension of injury time,the number of monocytes/macrophages increased first and then decreased,and the Pax7 mRNA level increased first and then decreased with the change of injury time.Compared with the control group,the mRNA and protein levels of m6A methylation-related factors in gastrocnemius did not change significantly on the injury-1 day.However,they were significantly increased on the injury-3 days compared with the control group(P<0.05),and then obviously decreased on the injury-5 days group compared with the injury-3 days group(P<0.05).Compared with the control group,they were no significant differences on the injury-7 days group and-9 days group.In vitro DEX decreased the mRNA levels of m6A methyltransferase factors in primary muscle satellite cells and C2C12 cells and increased the mRNA expression level of methylation-recognition enzyme factors(P<0.05).The mRNA levels of m6A methylation-related factors increased significantly in skeletal muscle tissue cells and myocytes after DEX treatment(P<0.05).After LPS treatment,the mRNA and protein expression levels of m6A methylation-related factors and the mRNA expression levels of inflammatory factors interleukin(IL)-6 and IL-1β in macrophages increased significantly(P<0.05),while the levels of IL-6 and IL-1β mRNA in macrophages decreased significantly when the Mettl3 was inhibited(P<0.05).Conclusion m6A methylation-related factors primarily is activated in the damaged muscle cells and inflammation response of macrophages.Inhibition of m6A methyltransferase can reduce the inflammatory response of macrophages.
8.Improvement and Application of Sampling Device for Adsorption and Concentration of Volatile Organic Compounds
Xin-Yi GUO ; Man-Man WU ; Chao MA ; Jia-Xin CHEN ; Da-Jun LIN ; Zhen ZHOU ; Ying-Nan GAO ; Wei GAO
Chinese Journal of Analytical Chemistry 2024;52(10):1487-1495,中插14-中插24
An adsorption and concentration sampling device for volatile organic compounds(VOCs)was designed in this work,which improved the long-term monitoring stability of the online monitoring system for VOC adsorption and concentration,and solved the issue of rapid attenuation of responses toward higher carbon compounds.The designed VOC desorption device achieved an average heating rate of 40 ℃/s,with a relative standard deviation(RSD)of 0.4%.Quantitative analysis of mixture of 116 kinds of different VOC standard gases was performed,and the test results showed that the qualification rate of standard curves increased significantly from 90%to 99%,the proportion of detection limits below 0.1 nmol/mol improved from 85%to 90%,and the proportion of residual levels in the system below 0.1 nmol/mol also increased from 85%to 90%.The stable monitoring period was extended from 20 d to over 30 d,making it more conducive to long-term unattended monitoring by the developed instrument.
9.Effects of three sterilization methods on the magnetic flux of magnetic surgical devices and analysis of sterilization cost
Feng MA ; Aihua SHI ; Xiaoyan ZENG ; Fang BAI ; Ningxia JIA ; Hao XUE ; Fengling WANG ; Yan LI ; Xufeng ZHANG ; Yi LÜ ; Lingling SHI
Journal of Xi'an Jiaotong University(Medical Sciences) 2024;45(4):669-673
Objective To analyze the effects of three sterilization methods,namely,pressure steam,low-temperature plasma and ethylene oxide,on the magnetic flux of magnetic surgical devices and their sterilization costs.Methods A total of 234 magnetic surgical devices of different specifications and models(magnetic rings)were randomly divided into Group A,Group B and Group C after the paired number was labelled,and each group consisted of 78 pieces(39 pairs).After packaging each pair of devices according to sterilization specifications,Group A was sterilized by pressure steam,Group B was sterilized by low-temperature plasma,and Group C was sterilized by ethylene oxide.We measured the magnetic flux of three sets of magnetic rings before and after sterilization,and comparatively analyzed the sterilization cost and sterilization time of the single package.Results There was no statistically significant difference in the impact of the three sterilization methods on the magnetic flux of the magnetic surgical devices(P>0.05),but there was a significant difference in the magnetic flux before and after sterilization for each sterilization method(P<0.001);the sterilization cost was(1.96±0.16)yuan for Group A,(23.17±0.32)yuan for Group B,and(8.16±0.18)yuan for Group C,showing statistically significant differences among the three groups(P<0.01).The sterilization time was(65.21±3.36)min for Group A,(45.46±1.39)min for Group B,and(1020.38±12.21)min for Group C,with statistically significant differences among the three groups(P<0.01).Conclusion None of the three sterilization methods affects the magnetic flux of the magnetic surgical devices.Pressure steam method shows the lowest cost of single package,low-temperature plasma method shows the highest cost of single package,while ethylene oxide method shows the highest sterilization time.Pressure steam should be the preferred sterilization method for magnetic surgical devices.
10.Monitoring and analysis on host animals of hemorrhagic fever with renal syndrome in Henan Province from 2019 to 2022
Dongxiao LI ; Wei FAN ; Lin ZHU ; Xiao HU ; Yi LI ; Hongxia MA ; Haifeng WANG ; Ying YE ; Jia SU ; Xueyong HUANG
Chinese Journal of Preventive Medicine 2024;58(1):18-24
Objective:To investigate the distribution and hantavirus (HV) carrying state in host animals of hemorrhagic fever with renal syndrome (HFRS) in Henan Province from 2019 to 2022.Methods:Host animal monitoring was carried out at the monitoring sites of HFRS in Henan Province. The real-time fluorescence quantitative PCR was used to detect hantavirus in rat lungs. The types of hantavirus were analyzed. The positive samples were sequenced and then sequence homology and variation were analyzed.Results:A total of 1 308 rodents were captured from 2019 to 2022, 16 specimens of rat lungs tested positive for hantavirus nucleic acid. The positive rate of HV was 1.22% (16/1 308). According to type, the positive rate of HV in Apodius agrarius was the highest (68.75%, 11/16). According to distribution, the positive rate of HV in field samples was the highest (2.50%, 12/480), and the positive rate of HV in residential samples was 0.53% (4/759). The typing results of 16 positive samples showed that all viruses were hantavirus type Ⅰ (hantaan virus). The positive samples were sequenced and eight S gene fragments (GenBank number: OQ681444-OQ681451) and six M gene fragments (OQ681438-OQ681443) were obtained. The S and M gene fragments were similar to the Shaanxi 84FLi strain and Sichuan SN7 strain. Phylogenetic analysis of S and M gene fragments showed that they all belonged to the hantaan virus-H5 subtype. Amino acid sequence analysis revealed that, compared with the hantaan virus vaccine strain 84FLi, the 74th amino acid encoded by eight S fragments was replaced by aspartamide with serine. Tryptophan was replaced by glycine at the 14th position of Gn region in XC2022047, and isoleucine was replaced by alanine at the 359 position of XC2022022 and XC2022024.Conclusion:The hantavirus carried by host animals in Henan Province from 2019 to 2022 belongs to the type Ⅰ (hantaan virus), and Apodemus agrarius is still the dominant host animal of the hantaan virus. Compared with the vaccine strains, amino acid sites are replaced in the immune epitopes of the S and M gene fragments.

Result Analysis
Print
Save
E-mail