1.Effect of wogonin on nerve injury in rats with diabetic cerebral infarction
Huanhuan WANG ; Panpan LIANG ; Jinshui YANG ; Shuxian JIA ; Jiajia ZHAO ; Yuanyuan CHEN ; Qian XUE ; Aixia SONG
Chinese Journal of Tissue Engineering Research 2025;29(11):2327-2333
BACKGROUND:Wogonin is a flavonoid extracted from the root of Scutellaria baicalensis.Previous studies have shown that baicalein has protective effects against cerebral ischemia-reperfusion injury,and can also reduce blood sugar and complications in diabetic mice,but its role and mechanism in diabetic cerebral infarction remain unclear. OBJECTIVE:To explore the effect of wogonin on nerve injury in rats with diabetic cerebral infarction and its mechanism. METHODS:Sprague-Dawley rats were randomly divided into six groups:control group,model group,low-dose wogonin group,medium-dose wogonin group,high-dose wogonin group,and high-dose wogonin+Ras homolog gene family member A(RhoA)activator group.Except for the control group,the other rats were established with diabetes and cerebral ischemia models using intraperitoneal injection of streptozotocin and middle cerebral artery occlusion.Low,medium-and high-dose wogonin groups were intragastrically given 10,20,40 mg/kg wogonin,respectively;high-dose wogonin+RhoA activator group was intragastrically given 40 mg/kg wogonin and intraperitoneally injected 10 mg/kg lysophosphatidic acid;control group and model group were given the same amount of normal saline once a day for 7 consecutive days.Rats in each group were evaluated for neurological deficits and their blood glucose levels were measured after the last dose.TTC staining was applied to detect the volume of cerebral infarction.Hematoxylin-eosin staining was applied to observe pathological changes in brain tissue.ELISA kit was applied to detect tumor necrosis factor-α,interleukin-6,malondialdehyde,and superoxide dismutase levels in brain tissue.Western blot was applied to detect the protein expression of RhoA and Rho-associated protein kinase(ROCK)2 in brain tissue. RESULTS AND CONCLUSION:Compared with the control group,the neuronal structure of rats in the model group was severely damaged,with cell necrosis and degeneration,the neurological deficit score,blood glucose level,and infarct volume were significantly elevated(P<0.05),the levels of tumor necrosis factor-α,interleukin-6,and malondialdehyde,and the protein expression of RhoA and ROCK2 in brain tissue were significantly increased(P<0.05),and the superoxide dismutase level was decreased(P<0.05).Compared with the model group,the low-,medium-,and high-dose wogonin groups showed improved neuronal damage,reduced cell degeneration and necrosis,a significant reduction in neurological deficit score,blood glucose level,infarct volume,and the levels of tumor necrosis factor-α,interleukin-6,and malondialdehyde,and the protein expression of RhoA and ROCK2 in brain tissue,and an increase in the superoxide dismutase level(P<0.05).Compared with the high-dose wogonin group,the high-dose wogonin+RhoA activator group significantly weakened the improvement in the above indexes of rats with diabetic cerebral infarction(P<0.05).To conclude,wogonin can improve the blood glucose level in rats with diabetic cerebral infarction,reduce cerebral infarction and nerve injury,and its mechanism may be related to the inhibition of RhoA/ROCK signaling pathway.
2.Effect of refractive status before small incision lenticule extraction surgery on postoperative accommodative function
Meiluo ZHANG ; Chunyu TIAN ; Qinghua YANG ; Liexi JIA ; Hongtao ZHANG ; Manmei LI ; Zhengqing DU ; Zhuo ZENG ; Xue WANG ; Wei ZHANG
International Eye Science 2025;25(2):323-327
AIM: To investigate the abnormal conditions and change patterns of accommodative facility in patients with different refractive states before and after small incision lenticule extraction(SMILE)surgery.METHODS:A prospective clinical cohort study was conducted. A total of 59 patients(118 eyes)who underwent SMILE surgery and had visual function files established in our hospital from June to December 2023 were randomly selected, including 37 males and 22 females, aged 18-35 years(with an average age of 25.19±5.65 years). According to the preoperative spherical equivalent(SE), they were divided into two groups: the low-to-moderate myopia group(SE≥-6.00 DS)with 40 patients(80 eyes), and the high myopia group(SE<-6.00 DS)with 19 patients(38 eyes). The monocular and binocular accommodative facility before surgery and at 1 wk and 1 mo after surgery were compared, and the changes in accommodative facility before and after SMILE surgery in the two groups of patients were analyzed.RESULTS:All surgeries were completed successfully. In the low-to-moderate myopia group, 33 cases(66 eyes)completed the 1-month follow-up after surgery, with a loss to follow-up rate of 17.5%(7/40). In the high myopia group, 15 patients(30 eyes)completed the 1-month follow-up after surgery, with a loss to follow-up rate of 21.1%(4/19). After SMILE surgery, the uncorrected visual acuity and SE of both low-to-moderate myopia and high myopia were significantly improved(all P<0.05). The accommodative facility of the right eyes in all the patients at 1 mo after surgery was better than that before surgery and at 1 wk after surgery(P=0.002, 0.006), the accommodative facility of the left eyes was significantly increased at 1 mo after surgery than that at 1 wk after surgery(P=0.005), and the binocular accommodative facility at 1 mo after surgery was significantly increased compared with that before surgery(P<0.017). Furthermore, there were statistical significance in accommodative facility of the right eyes in the low-to-moderate group at 1 mo compared with that before surgery and at 1 wk after surgery(P=0.011, 0.004); it was significantly increased in the left eyes at 1 mo after surgery compared with that at 1 wk after surgery(P=0.001), and binocular accommodative facility at 1 mo after surgery was significantly better than that before surgery(P<0.001). Furthermore, there was no statistical significance in the right, left and binocular accommodative facility of patients in the high myopia group(all P>0.017).CONCLUSION: After SMILE surgery, the monocular accommodative facility shows a transient decrease and then exceeds the preoperative level at 1 mo after surgery, and the binocular accommodative facility gradually improves after surgery. SMILE surgery has a positive impact on the monocular and binocular accommodative facility in patients with low-to-moderate myopia, but has no significant impact on the accommodative facility in patients with high myopia. It is of clinical significance to strengthen the detection of monocular and binocular accommodative facility before and after SMILE surgery.
3.Preliminary exploration of differentiating and treating multiple system atrophy from the perspective of the eight extraordinary meridians
Di ZHAO ; Zhigang CHEN ; Nannan LI ; Lu CHEN ; Yao WANG ; Jing XUE ; Xinning ZHANG ; Chengru JIA ; Xuan XU ; Kaige ZHANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):392-397
Multiple system atrophy (MSA) is a rare neurodegenerative disease with complex clinical manifestations, presenting substantial challenges in clinical diagnosis and treatment. Its symptoms and the eight extraordinary meridians are potentially correlated; therefore, this article explores the association between MSA symptom clusters and the eight extraordinary meridians based on their circulation and physiological functions, as well as their treatment strategies. The progression from deficiency to damage in the eight extraordinary meridians aligns with the core pathogenesis of MSA, which is characterized by "the continuous accumulation of impacts from the vital qi deficiency leading to eventual damage". Liver and kidney deficiency and the emptiness of the eight extraordinary meridians are required for the onset of MSA; the stagnation of qi deficiency and the gradual damage to the eight extraordinary meridians are the key stages in the prolonged progression of MSA. The disease often begins with the involvement of the yin and yang qiao mai, governor vessel, thoroughfare vessel, and conception vessel before progressing to multiple meridian involvements, ultimately affecting all eight extraordinary meridians simultaneously. The treatment approach emphasizes that "the direct method may be used for joining battle, but indirect method will be needed in order to secure victory" and focuses on "eliminate pathogenic factors and reinforce healthy qi". Distinguishing the extraordinary meridians and focusing on the primary symptoms are pivotal to improving efficacy. Clinical treatment is aimed at the target, and tailored treatment based on careful clinical observation ensures precision in targeting the disease using the eight extraordinary meridians as the framework and core symptoms as the specific focus. Additionally, combining acupuncture, daoyin therapy, and other method may help prolong survival. This article classifies clinical manifestations based on the theory of the eight extraordinary meridians and explores treatment.
4.Observation of Digestive Tract Tissue Morphology in Mice Using Probe-Based Confocal Laser Endomicroscopy
Yueqin LIU ; Weiguo XUE ; Shuyou WANG ; Yaohua SHEN ; Shuyong JIA ; Guangjun WANG ; Xiaojing SONG
Laboratory Animal and Comparative Medicine 2025;45(4):457-465
ObjectiveTo explore the application value of probe-based confocal laser endomicroscopy (pCLE) in rapidly detecting and evaluating the morphological characteristics of digestive tract tissues in mice. MethodsTwelve male SPF Kunming mice aged 6 weeks were randomly divided into two groups. Six mice were subjected to gastric gavage with 52% Red Star Erguotou to establish the model, and six were given saline by gastric gavage as a control. After 28 days of modeling, 3 mice were randomly selected from each group. After deep anesthesia induced by inhalation of 3% isoflurane, the mice were sacrificed by cervical dislocation. The stomach, duodenum, jejunum, and rectum tissues were excised and immersed in 1% fluorescein sodium solution for staining. The microstructure of the mucosal surface of each tissue was observed using pCLE. The remaining mice in the model group and the control group were deeply anesthetized by inhaling 3% isoflurane, then cardiac perfusion was performed successively with saline and 4% paraformaldehyde. The stomach, duodenum, jejunum, and rectum tissues were excised for dehydration, section and hematoxylin-eosin (HE) staining, and the morphological changes of the tissues were observed under a microscope. ResultsUnder pCLE imaging, fluorescence staining on the surface of the gastrointestinal mucosa was uniform in the control group; the morphology of gastric pits, intestinal villi, and intestinal crypts was intact, arranged compactly, and had distinct boundaries. In the model group, the gastrointestinal mucosa exhibited mucosal swelling and deformation, with uneven fluorescence staining and fluorescein leakage. Furthermore, some tissues showed defects or cell shedding, and the boundaries between adjacent characteristic structures (e.g., gastric pits, intestinal crypts) were blurred. HE staining showed that the gastrointestinal tissue structure of the control group mice was normal and well-organized, with no structural defects. Moreover, submucosal glands were uniform in size, with no hyperplasia observed, and no obvious inflammatory cell infiltration. In the model group, some gastrointestinal mucosal structures were defective and sparsely arranged; submucosal glands showed atrophy, accompanied by obvious inflammatory cell infiltration. The histological characteristics detected by pCLE were consistent with those of HE staining. ConclusionpCLE can be used to obtain rapid, real-time, large-scale, and high-resolution microscopic imaging of the gastrointestinal mucosa, realistically and comprehensively displaying its physiological and microstructural characteristics. It shows promising prospects and practical utility in the histological evaluation of digestive system injuries in small animals.
5.Si-Wu-Tang attenuates liver fibrosis via regulating lncRNA H19-dependent pathways involving cytoskeleton remodeling and ECM deposition.
Jiaorong QU ; Xiaoyong XUE ; Zhixing WANG ; Zhi MA ; Kexin JIA ; Fanghong LI ; Yinhao ZHANG ; Ruiyu WU ; Fei ZHOU ; Piwen ZHAO ; Xiaojiaoyang LI
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):31-46
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Humans
;
RNA, Long Noncoding/genetics*
;
Liver Cirrhosis/genetics*
;
Liver/metabolism*
;
Hepatic Stellate Cells/pathology*
;
MicroRNAs/metabolism*
;
Extracellular Matrix/metabolism*
;
Drugs, Chinese Herbal
7.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
8.Biosensor analysis technology and its research progress in drug development of Alzheimer's disease
Shu-qi SHEN ; Jia-hao FANG ; Hui WANG ; Liang CHAO ; Piao-xue YOU ; Zhan-ying HONG
Acta Pharmaceutica Sinica 2024;59(3):554-564
Biosensor analysis technology is a kind of technology with high specificity that can convert biological reactions into optical and electrical signals. In the development of drugs for Alzheimer's disease (AD), according to different disease hypotheses and targets, this technology plays an important role in confirming targets and screening active compounds. This paper briefly describes the pathogenesis of AD and the current situation of therapeutic drugs, introduces three biosensor analysis techniques commonly used in the discovery of AD drugs, such as surface plasmon resonance (SPR), biolayer interferometry (BLI) and fluorescence analysis technology, explains its basic principle and application progress, and summarizes their advantages and limitations respectively.
9.Based on the interaction between supramolecules of traditional Chinese medicine and enterobacteria to explore the material basis of combination of Rhei Radix et Rhizoma - Coptidis Rhizoma
Xiao-yu LIN ; Ji-hui LU ; Yao-zhi ZHANG ; Wen-min PI ; Zhi-jia WANG ; Lin-ying WU ; Xue-mei HUANG ; Peng-long WANG
Acta Pharmaceutica Sinica 2024;59(2):464-475
Based on the interaction between supramolecule of traditional Chinese medicine and enterobacteria, the material basis of
10.Electrophysiological Mechanisms of Sleep Homeostasis
Xue XIAO ; Dong CHEN ; Jia-Li LIU ; Liang WANG
Progress in Biochemistry and Biophysics 2024;51(2):369-377
The brain’s neural circuits consist of a large number of highly unstable networks. Despite the existence of many internal and external factors that continuously disturb the balance, our brains employ an array of homeostatic mechanisms that allow neurons or neural circuits to sense how active they are, and when they deviate from a target value, whereby a force must be generated to move neuronal activity back toward this target. Sleep is one of the well-known physiological states in the regulation of homeostasis. Sleep pressure increases during wakefulness and decreases during sleep. When sleep is lost (e.g., sleep deprivation), this loss is compensated by extending or strengthening subsequent sleep. These phenomena are known as sleep homeostasis. The dysregulation of sleep homeostasis accompanies brain-related diseases such as schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder. More importantly, it can significantly undermine the basis of traditional sleep hygiene practices for these diseases. Therefore, clarifying the mechanisms of sleep homeostasis is important for therapy, but it remains an unsolved mystery. In addition to pharmacological treatment, non-invasive brain stimulation has become one of the most promising tools for clinical treatment in recent years due to its low cost, portability and low incidence of side effects. In order to promote relevant technologies, this review will focus on the electrophysiological mechanisms of sleep homeostasis. We first discuss the electrophysiological marker of sleep homeostasis, slow-wave activity, then move to the neuronal firing rates, finally discuss more aspects of sleep homeostasis, including differences in brain area, sleep stages, learning and individual differences.


Result Analysis
Print
Save
E-mail