1.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
2.Expert consensus on the positioning of the "Three-in-One" Registration and Evaluation Evidence System and the value of orientation of the "personal experience"
Qi WANG ; Yongyan WANG ; Wei XIAO ; Jinzhou TIAN ; Shilin CHEN ; Liguo ZHU ; Guangrong SUN ; Daning ZHANG ; Daihan ZHOU ; Guoqiang MEI ; Baofan SHEN ; Qingguo WANG ; Xixing WANG ; Zheng NAN ; Mingxiang HAN ; Yue GAO ; Xiaohe XIAO ; Xiaobo SUN ; Kaiwen HU ; Liqun JIA ; Li FENG ; Chengyu WU ; Xia DING
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):445-450
Traditional Chinese Medicine (TCM), as a treasure of the Chinese nation, plays a significant role in maintaining public health. In 2019, the Central Committee of the Communist Party of China and the State Council proposed for the first time the establishment of a TCM registration and evaluation evidence system that integrates TCM theory, "personal experience" and clinical trials (referred to as the "Three-in-One" System) to promote the inheritance and innovation of TCM. Subsequently, the National Medical Products Administration issued several guiding principles to advance the improvement and implementation of this system. Owing to the complexity of its implementation, there are still differing understandings within the TCM industry regarding the positioning of the "Three-in-One" Registration and Evaluation Evidence System, as well as the connotation and value orientation of the "personal experience." To address this, Academician WANG Qi, President of the TCM Association, China International Exchange and Promotion Association for Medical and Healthcare and TCM master, led a group of academicians, TCM masters, TCM pharmacology experts and clinical TCM experts to convene a "Seminar on Promoting the Implementation of the ′Three-in-One′ Registration and Evaluation Evidence System for Chinese Medicinals." Through extensive discussions, an expert consensus was formed, clarifying the different roles of the TCM theory, "personal experience" and clinical trials within the system. It was further emphasized that the "personal experience" is the core of this system, and its data should be derived from clinical practice scenarios. In the future, the improvement of this system will require collaborative efforts across multiple fields to promote the high-quality development of the Chinese medicinal industry.
3.Pharmacological effect and mechanism of tannic acids in Paeoniae Radix Alba.
Jia-Xin DIAO ; Qi-Tong ZHENG ; Meng-Yao CHEN ; Jiang-Chuan HONG ; Min HAO ; Qing-Mei FENG ; Jun-Qi HU ; Xia-Nan SANG ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(6):1471-1483
The chemical composition of Paeoniae Radix Alba(PRA) is complex, with primary secondary metabolites including monoterpenoids, tannins, triterpenoids, and flavonoids. In previous studies on the material basis of PRA, it was found that, in addition to the widely studied characteristic monoterpene glycosides, tannic acid components also play an important role in the efficacy of PRA. However, their pharmacological effects have not been thoroughly investigated. This paper reviews the tannic acid components in PRA, including pentagaloyl glucose(PGG), tetragaloyl glucose(TGG), trigaloyl glucose(TriGG), and gallic acid, along with their structures, properties, and characteristics to provide a detailed discussion of their pharmacological activities and related mechanisms, aiming to offer a theoretical basis for the material basis research and clinical application of PRA.
Paeonia/chemistry*
;
Tannins/chemistry*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Plant Extracts
4.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
5.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
6.Effects of Sishen Pills and its separated prescriptions on human intestinal flora based on in vitro fermentation model.
Jia-Yang XI ; Qi-Qi WANG ; Xue CHENG ; Hui XIA ; Lu CAO ; Yue-Hao XIE ; Tian-Xiang ZHU ; Ming-Zhu YIN
China Journal of Chinese Materia Medica 2025;50(11):3137-3146
Sishen Pills and its separated prescriptions are classic prescriptions of traditional Chinese medicine to treat intestinal diseases. In this study, a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry(HPLC-ESI-MS/MS) technology was used to identify the components of Sishen Pills, Ershen Pills, and Wuweizi Powder. The positive and negative ion sources of electrospray ionization were simultaneously collected by mass spectrometry. A total of 11 effective components were detected in Sishen Pills, with four effective components detected in Ershen Pills and eight effective components detected in Wuweizi Powder, respectively. To explore the effects of Sishen Pills and its separated prescriptions on the human intestinal flora, an in vitro anaerobic fermentation model was established, and the human intestinal flora was incubated with Sishen Pills, Ershen Pills, and Wuweizi Powder in vitro. The 16S rDNA sequencing technology was used to analyze the changes in the intestinal flora. The results showed that compared with the control group, Sishen Pills, and its separated prescriptions could decrease the intestinal flora abundance and increase the Shannon index after fermentation. The abundance of Bifidobacterium was significantly increased in the Sishen Pills and Ershen Pills groups. However, the abundance of Lactobacillus, Weissella, and Pediococcus was significantly increased in the Wuweizi Powder group. After fermentation for 12 h, the pH of the fermentation solution of three kinds of liquids with feces gradually decreased and was lower than that of the control group. The decreasing amplitude in the Wuweizi Powder group was the most obvious. The single-bacteria fermentation experiments further confirmed that Sishen Pills and Wuweizi Powder had inhibitory effects on Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis, and the antibacterial activity of Wuweizi Powder was stronger than that of Sishen Pills. Both Sishen Pills and Ershen Pills could promote the growth of Lactobacillus brevis, and Ershen Pills could promote the growth of Bifidobacterium adolescentis. This study provided a more sufficient theoretical basis for the clinical application of Sishen Pills and its separated prescriptions.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Drugs, Chinese Herbal/chemistry*
;
Fermentation/drug effects*
;
Bacteria/drug effects*
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Intestines/microbiology*
7.Effects of Quorum Sensing Molecules on The Immune System
Wen-Min MA ; Xuan-Qi CHEN ; Hong-Xia MA ; Wen-Hui ZHANG ; Ling-Cong KONG ; Yu-Jia ZHOU ; Yuan-Yuan HU ; Yu JIA
Progress in Biochemistry and Biophysics 2024;51(11):2853-2867
In recent years, the development of host-acting antibacterial compounds has gradually become a hotspot in the field of anti-infection. Through research on the interaction mechanism between hosts and pathogenic bacteria, it has been found that the immune system is one of the key targets of host-acting antibacterial compounds. There is a communication system called the quorum sensing system in microorganisms, which mainly adjusts the structure of multi-microbial community and coordinates the group behavior. When the quorum sensing molecules secreted by microorganisms reach a threshold concentration, the quorum sensing system is activated and the overall gene expression of the microorganism is changed. In addition to regulating the density of microorganisms, quorum sensing molecules can also act as a link between pathogenic microorganisms and hosts, entering the host immune system and playing a role in affecting the morphological structure of immune cells, secreting cytokines, and inducing apoptosis, leading to host immune injury and causing host immune dysfunction.The key mechanism of 3-oxo-C12-HSL and other acyl-homoserine lactone (AHL) molecules in the innate immune system has been extensively studied. The lipid solubility allows AHLs to pass through the plasma membrane of host immune cells easily and induce dissolution of lipid domains. Then, it acts through signaling pathways such as p38MAPK and JAK-STAT, further influencing the immune cell’s defense response to bacteria and potentially leading to cell apoptosis. Additionally, the human lactonase paraoxonase 2, which can degrade3-oxo-C12-HSL, has been found in macrophage. It acts as an immune regulator that promotes macrophage phagocytosis of pathogens and is hypothesized to have the ability to reduce bacterial resistance. The mechanism of quorum sensing molecules in the adaptive immune system is less studied, the current results suggest that 3-oxo-C12-HSL is closely related to the mitochondrial pathway in host immune cells. For example, 3-oxo-C12-HSL induces apoptosis of Jurkat cells by inhibiting the expression of three mitochondrial electron transport chain proteins; it can also trigger mitochondrial dysfunction and induce mast cell apoptosis through Ca2+ signaling.Among the quorum sensing molecules, the AHLs have the greatest impact on plant immune system. The different effects on plant resistance depends on the chain lengths of acyl groups in bacterial-produced AHLs. Short-chain AHLs (C4-HSL and C8-HSL) induce plant resistance to pathogenic bacteria mainly through the auxin pathway and jasmonic acid pathway. Long-chain AHL (3-oxo-C14-HSL) is commonly used in hosts against fungal pathogens by inducing stomata defense responses, and the reaction process is related to salicylic acid. Diffusible signal factor molecules also interfere with the stomatal immunity caused by pathogens. It may act through the formin nanoclustering-mediated actin assembly and MPK3 pathway to inhibit the innate immunity of Arabidopsis. In summary, AHLs induced different plant pathways and affects the plant-bacteria interactions to trigger plant immunity. As a quorum sensing molecule of fungi, farnesol has similar effects on host immunity as AHLs, such as stimulating cytokine secretion and activating an inflammatory response. It also plays a unique role on dendritic cell differentiation and maturation. In addition, studies have found that farnesol has a protective effect on autoimmune encephalomyelitis, which may be related to its effect on the composition of intestinal microorganisms of the host.Therefore, targeting the host immune system and quorum sensing molecules to develop antibacterial compounds can effectively inhibit the invasion of pathogens and subserve the host to resist the influence of pathogenic bacteria. This article will review the mechanism of host immune responses triggered by important quorum sensing molecules, aiming to explore the targets of host-acting antibacterial compounds and provide new directions for the prevention or treatment of causative infectious sources and the development of related drugs.
8.Research status in immunotherapy of colitis-related cancer with MDSCs
Jia CHEN ; Qi XIA ; Yu-Jie HE ; Yue LI ; Ze-Ting YUAN ; Pei-Hao YIN
The Chinese Journal of Clinical Pharmacology 2024;40(2):294-298
Colitis-associated cancer(CAC)is a specific type of colorectal cancer that develops from inflammatory bowel disease(IBD).Myeloid-derived suppressor cells(MDSCs)are a group of myeloid cells with immunosuppressive properties,and MDSCs in the tumor microenvironment proliferate and activate during the development of colitis-associated cancer,inhibiting T-cell production and impairing their function,which impedes the immunotherapeutic effect of colitis-associated cancer.In this paper,we review the immunosuppressive mechanisms of MDSCs in the development of inflammatory bowel disease to colitis-associated cancers and the current drugs targeting MDSCs for immunotherapy of inflammatory colorectal cancers,with a view to providing new strategies for the treatment of colitis-associated cancers.
9.Effect and mechanism of dandelion flavonoids in alleviating lipopolysaccharide-induced colon epithelial cell injury
Jia-Qi ZHANG ; Dong-Xue MEI ; Sha LI ; Sheng-Gai GAO ; Jia ZHENG ; Hong-Xia LIANG ; Yi WANG
The Chinese Journal of Clinical Pharmacology 2024;40(4):549-553
Objective To investigate the protective effect of dandelion flavone(DF)on lipopolysaccharide(LPS)-induced colon epithelial cell injury by intervening oxidative stress and inflammation with AT-specific binding protein 2(SATB2).Methods Colon epithelial cells FHC were cultured.FHC cells were randomly divided into control group(normal cultured),LPS group(10 μg·mL-1 LPS),experimental-L group(10 μg·mL-1 LPS+1 μmol·L-1 DF),experimental-H group(10 μg·mL-1 LPS+5 μmol·L-1 DF),experimental-H+sh-NC group(transfected with sh-NC+10 μg·mL-1 LPS+5 μmol·mL-1 DF),experimental-H+sh-SATB2 group(transfected with sh-SATB2+10 μg·mL-1 LPS+5μmol·L-1 DF).The relative expression level of SATB2 protein in FHC cells was detected by Western blotting.The survival rate of FHC cells in each group was determined by tetramethylazolium blue(MTT).The apoptosis rate of FHC cells in each group was detected by flow cytometry.The levels of malondialdehyde(MDA)and interleukin-6(IL-6)in FHC cells were detected by the kit.Results The relative expression levels of SATB2 protein in control group,LPS group,experimental-H group,experimental-H+sh-NC group and experimental-H+sh-SATB2 group were 0.83±0.09,0.19±0.03,0.66±0.05,0.62±0.07 and 0.23±0.03,respectively;cell viability rates were(100.00±1.00)%,(48.16±4.31)%,(85.31±5.83)%,(81.39±6.47)%and(58.75±5.24)%,respectively;cell apoptosis rates were(3.27±0.81)%,(41.26±2.09)%,(11.35±1.04)%,(10.29±1.26)%and(35.87±2.15)%,respectively;MDA levels were(13.16±1.73),(52.87±3.49),(23.19±2.05),(20.98±3.17)and(44.87±3.05)μmol·L-1,respectively;IL-6 levels were(507.18±103.26),(2 132.09±198.15),(883.16±136.92),(801.69±119.85)and(1 736.29±206.91)pg·mL-1,respectively.The above indicators in the LPS group showed significant differences compared to the control group(all P<0.05);the above indicators in the experimental-H group showed significant differences compared to the LPS group(all P<0.05);the above indicators in the experimental-H+sh-SATB2 group showed significant differences compared to the experimental-H+sh-NC group(all P<0.05).Conclusion DF has a protective effect on LPS-induced colon epithelial cell injury by intervening oxidative stress and inflammation through SATB2.
10.Research status of anti-inflammatory effect of traditional Chinese medicine based on NLRP3 inflammatory body
Fu-Mei XU ; Jun-Yuan ZENG ; Lei ZHAO ; Qi-Li ZHANG ; Peng-Fei XIA ; Yin-Qiang JIA ; Jie WANG ; Peng-Xia FANG ; Yan-Li XU
The Chinese Journal of Clinical Pharmacology 2024;40(6):923-927
Inflammasome is a kind of intracellular polyprotein complex,which is an important component of the complex system of local inflammatory microenvironment after human tissue damage.When the inflammasome is activated,it induces the activation of cysteine aspartate proteinase 1(caspase-1),mediates the maturation and secretion of proinflammatory cytokines,such as interleukin(IL)-1 β and IL-18,and induces cell death,which plays an important role in regulating the host immune response to pathogen infection and tissue repair of cell damage.Nod-like receptor protein 3(NLRP3)inflammatory body,which is composed of NLRP3,pro-cysteine aspartic acid specific protease-1(pro-caspase-1)and apoptosis-related spot-like protein(ASC),is the most deeply and widely studied type of inflammatory body,which plays an important role in the regulation of inflammation.When NLRP3 inflammatory bodies are activated,inflammatory mediators are produced and released,which participate in the occurrence and development of a variety of inflammatory diseases.Some studies have shown that traditional Chinese medicine can improve the pathological state of a variety of diseases by inhibiting NLRP3 inflammatory bodies,and play a role in the prevention and treatment of a variety of inflammatory diseases,including cardiovascular diseases,joint inflammation,diabetes and so on.This paper systematically combs the mechanism of NLRP3 inflammatory bodies,and summarizes the latest research reports on the effects of traditional Chinese medicine compound prescription,traditional Chinese medicine monomers and traditional Chinese medicine extracts on NLRP3 inflammatory bodies in the treatment of inflammatory diseases,in order to provide new ideas for the further study of the pathogenesis and drug treatment of many inflammatory diseases.


Result Analysis
Print
Save
E-mail