1.Gut microbiota and osteoporotic fractures
Wensheng ZHAO ; Xiaolin LI ; Changhua PENG ; Jia DENG ; Hao SHENG ; Hongwei CHEN ; Chaoju ZHANG ; Chuan HE
Chinese Journal of Tissue Engineering Research 2025;29(6):1296-1304
BACKGROUND:Osteoporotic fracture is the most serious complication of osteoporosis.Previous studies have demonstrated that gut microbiota has a regulatory effect on skeletal tissue and that gut microbiota has an important relationship with osteoporotic fracture,but the causal relationship between the two is unclear. OBJECTIVE:To explore the causal relationship between gut microbiota and osteoporotic fractures using Mendelian randomization method. METHODS:The genome-wide association study(GWAS)datasets of gut microbiota and osteoporotic fracture were obtained from the IEU Open GWAS database and the Finnish database R9,respectively.Using gut microbiota as the exposure factor and osteoporotic fracture as the outcome variable,Mendelian randomization analyses with random-effects inverse variance weighted,MR-Egger regression,weighted median,simple model,and weighted model methods were performed to assess whether there is a causal relationship between gut microbiota and osteoporotic fracture.Sensitivity analyses were performed to test the reliability and robustness of the results.Reverse Mendelian randomization analyses were performed to further validate the causal relationship identified in the forward Mendelian randomization analyses. RESULTS AND CONCLUSION:The results of this Mendelian randomization analysis indicated a causal relationship between gut microbiota and osteoporotic fracture.Elevated abundance of Actinomycetales[odds ratio(OR)=1.562,95%confidence interval(CI):1.027-2.375,P=0.037),Actinomycetaceae(OR=1.561,95%CI:1.027-2.374,P=0.037),Actinomyces(OR=1.544,95%CI:1.130-2.110,P=0.006),Butyricicoccus(OR=1.781,95%CI:1.194-2.657,P=0.005),Coprococcus 2(OR=1.550,95%CI:1.068-2.251,P=0.021),Family ⅩⅢ UCG-001(OR=1.473,95%CI:1.001-2.168,P=0.049),Methanobrevibacter(OR=1.274,95%CI:1.001-1.621,P=0.049),and Roseburia(OR=1.429,95%CI:1.015-2.013,P=0.041)would increase the risk of osteoporotic fractures in patients.Elevated abundance of Bacteroidia(OR=0.660,95%CI:0.455-0.959,P=0.029),Bacteroidales(OR=0.660,95%CI:0.455-0.959,P=0.029),Christensenellacea(OR=0.725,95%CI:0.529-0.995,P=0.047),Ruminococcaceae(OR=0.643,95%CI:0.443-0.933,P=0.020),Enterorhabdus(OR=0.558,95%CI:0.395-0.788,P=0.001),Eubacterium rectale group(OR=0.631,95%CI:0.435-0.916,P=0.016),Lachnospiraceae UCG008(OR=0.738,95%CI:0.546-0.998,P=0.048),and Ruminiclostridium 9(OR=0.492,95%CI:0.324-0.746,P=0.001)would reduce the risk of osteoporotic fractures in patients.We identified 16 gut microbiota associated with osteoporotic fracture by the Mendelian randomization method.That is,using gut microbiota as the exposure factor and osteoporotic fracture as the outcome variable,eight gut microbiota showed positive causal associations with osteoporotic fracture and another eight gut microbiota showed negative causal associations with osteoporotic fracture.The results of this study not only identify new biomarkers for the early prediction of osteoporotic fracture and potential therapeutic targets in clinical practice,but also provide an experimental basis and theoretical basis for the study of improving the occurrence and prognosis of osteoporotic fracture through gut microbiota in bone tissue engineering.
2.Identification and drug sensitivity analysis of key molecular markers in mesenchymal cell-derived osteosarcoma
Haojun ZHANG ; Hongyi LI ; Hui ZHANG ; Haoran CHEN ; Lizhong ZHANG ; Jie GENG ; Chuandong HOU ; Qi YU ; Peifeng HE ; Jinpeng JIA ; Xuechun LU
Chinese Journal of Tissue Engineering Research 2025;29(7):1448-1456
BACKGROUND:Osteosarcoma has a complex pathogenesis and a poor prognosis.While advancements in medical technology have led to some improvements in the 5-year survival rate,substantial progress in its treatment has not yet been achieved. OBJECTIVE:To screen key molecular markers in osteosarcoma,analyze their relationship with osteosarcoma treatment drugs,and explore the potential disease mechanisms of osteosarcoma at the molecular level. METHODS:GSE99671 and GSE284259(miRNA)datasets were obtained from the Gene Expression Omnibus database.Differential gene expression analysis and Weighted Gene Co-expression Network Analysis(WGCNA)on GSE99671 were performed.Functional enrichment analysis was conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes separately for the differentially expressed genes and the module genes with the highest positive correlation to the disease.The intersection of these module genes and differentially expressed genes was taken as key genes.A Protein-Protein Interaction network was constructed,and correlation analysis on the key genes was performed using CytoScape software,and hub genes were identified.Hub genes were externally validated using the GSE28425 dataset and text validation was conducted.The drug sensitivity of hub genes was analyzed using the CellMiner database,with a threshold of absolute value of correlation coefficient|R|>0.3 and P<0.05. RESULTS AND CONCLUSION:(1)Differential gene expression analysis identified 529 differentially expressed genes,comprising 177 upregulated and 352 downregulated genes.WGCNA analysis yielded a total of 592 genes with the highest correlation to osteosarcoma.(2)Gene Ontology enrichment results indicated that the development of osteosarcoma may be associated with extracellular matrix,bone cell differentiation and development,human immune regulation,and collagen synthesis and degradation.Kyoto Encyclopedia of Genes and Genomes enrichment results showed the involvement of pathways such as PI3K-Akt signaling pathway,focal adhesion signaling pathway,and immune response in the onset of osteosarcoma.(3)The intersection analysis revealed a total of 59 key genes.Through Protein-Protein Interaction network analysis,8 hub genes were selected,which were LUM,PLOD1,PLOD2,MMP14,COL11A1,THBS2,LEPRE1,and TGFB1,all of which were upregulated.(4)External validation revealed significantly downregulated miRNAs that regulate the hub genes,with hsa-miR-144-3p and hsa-miR-150-5p showing the most significant downregulation.Text validation results demonstrated that the expression of hub genes was consistent with previous research.(5)Drug sensitivity analysis indicated a negative correlation between the activity of methotrexate,6-mercaptopurine,and pazopanib with the mRNA expression of PLOD1,PLOD2,and MMP14.Moreover,zoledronic acid and lapatinib showed a positive correlation with the mRNA expression of PLOD1,LUM,MMP14,PLOD2,and TGFB1.This suggests that zoledronic acid and lapatinib may be potential therapeutic drugs for osteosarcoma,but further validation is required through additional basic experiments and clinical studies.
3.Influencing factors for whole-eye astigmatism after pterygium excision combined with autologous limbal stem cell transplantation
Yanru HE ; Wanyue LI ; Jia LIU ; Yingwei WANG ; Zifeng ZHANG
International Eye Science 2025;25(2):286-291
AIM: To explore the factors affecting the whole-eye astigmatism after pterygium excision combined with autologous limbal stem cell transplantation.METHODS: A retrospective analysis was conducted on the medical records of 42 patients(42 eyes)with primary pterygium admitted in the ophthalmology department of Xijing Hospital from January 2023 to October 2023. They underwent pterygium excision combined with autologous limbal stem cell transplantation. The maximum invasion depth of pterygium into the cornea was measured with anterior segment optical coherence tomography(AS-OCT)before operation, the length of the pterygium invading cornea, the width of the limbus and the area of the invading cornea were measured during the operation, and three-dimensional values of corneal astigmatism of anterior segment, index of surface variance(ISV), index of vertical asymmetry(IVA), best corrected visual acuity(BCVA)and whole-eye astigmatism were collected before and at 1 mo after surgery. Patients with astigmatism ≤0.50 D or >0.50 D of the whole eye at 1 mo after surgery were assigned to group A and B, respectively. The differences of clinical data before and at 1 mo after surgery between the two groups, and the correlation between pre-operative clinical indicators and whole-eye astigmatism were analyzed. The decision tree algorithm was performed to explore the influencing factors of whole-eye astigmatism at 1 mo postoperatively.RESULTS: The maximum invasion depth of pterygium in the group A was significantly less than that in the group B [80.00(40.00, 180.00)μm vs 175.00(123.00, 190.00)μm, P=0.002]. Preoperative BCVA(LogMAR), whole-eye astigmatism, cornea astigmatism, ISV, IVA and maximum invasion depth of pterygium were positively correlated with whole-eye astigmatism at 1 mo after surgery(rs=0.317, P=0.041; rs=0.545, P<0.001; rs=0.448, P=0.003; rs=0.389, P=0.011; rs=0.382, P=0.013; rs=0.391, P=0.010). The decision tree algorithm screened out two influential factors: the maximum invasion depth of pterygium into the cornea and preoperative whole-eye astigmatism. The risk of whole-eye astigmatism >0.50 D at 1 mo after operation was higher with maximum invasion depth of pterygium into the cornea >95 μm than that with ≤95 μm. Among the patients with whole-eye astigmatism >2.63 D before operation, the probability of residual whole-eye astigmatism >0.50 D was 88.9%, and the predictive model AUC was 0.804.CONCLUSION: The whole-eye astigmatism after pterygium resection is mainly affected by the maximum invasion depth of pterygium into the cornea and preoperative whole-eye astigmatism. When the maximum invasion depth of pterygium into the corneal is >95 μm and the whole-eye stigmatism is >2.63 D before surgery, the patient should receive surgical treatment as soon as possible in order to obtain good clinical benefits.
4.Evidence-based research on the nutritional and health effects of functional components of tea
Zhijian HE ; Yuping LI ; Fan BU ; Jia CUI ; Xinwen BI ; Yuanjie CUI ; Zhiyuan GUO ; Ming LI
Shanghai Journal of Preventive Medicine 2025;37(2):190-198
As a traditional nutritional and healthy cash crop in China, tea has certain significance in promoting human health and preventing and controlling chronic diseases. Studies have shown that the nutritional health effect of tea is due to its rich functional components, mainly including tea polyphenols, tea pigments, tea polysaccharides, theanine, alkaloids and other bioactive substances. At present, researchers from the academic circles have continuously carried out animal and human experiments on the health effects of various functional components of tea, which has accumulated abundant research data and materials. Based on this, this article reviews the literature on the nutritional and health effects of the main functional components of tea, and adopts the method of evidence-based research to screen and extract relevant data for qualitative and quantitative meta-analysis. Subsequently, the nutritional health effects of the five functional components of tea, namely tea polyphenols, tea pigments, tea polysaccharides, theanine, and alkaloids, are summarized and outlined. Studies have shown that tea polyphenols, tea pigments, tea polysaccharides, theanine and alkaloids have different health effects and are expected to play their unique roles in promoting human health and preventing and controlling diseases.
5.Mahoniae Caulis Alkaloids Ameliorate Depression by Regulating Synaptic Plasticity via cAMP Pathway
Junhui HE ; Chunlian JIA ; Kedao LAI ; Guili ZHOU ; Rongfei ZHOU ; Yi LI ; Dongmei LI ; Jiaxiu XIE ; Guining WEI ; Juying ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):132-140
ObjectiveTo explore the mechanisms associated with Mahoniae Caulis alkaloids (MA) in ameliorating depression by network pharmacology, molecular docking, and animal experiments. MethodsThe component targets of MA were obtained through Swiss Target Prediction and TCMIP database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. Protein-protein interaction (PPI) network was constructed by protein interaction analysis (STRING) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed through Bioinformatics (DAVID) database. The docking of components and targets was performed by AGFR. The mouse model of depression was established by intraperitoneal injection of corticosterone (CORT) once a day for 35 consecutive days. Sixty mice were randomly allocated into control (0.9% normal saline), model (CORT, 20 mg·kg-1), positive control (fluoxetine hydrochloride, 3.6 mg·kg-1), and MA (10, 5, and 2.5 mg·kg-1) groups. Each group was administrated with corresponding medicine or normal saline once a day for 28 consecutive days. The depression-like behavior of mice was observed. The pathological changes of prefrontal cortex in mice were observed by hematoxylin-eosin staining. Terminal deoxynucleotidyl dUTP transferase nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the prefrontal cortex. Enzyme-linked immunosorbent assay was employed to assess the serum levels of brain-derived neurotrophic factor (BDNF), dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) in mice. The mRNA levels of cyclic adenosine monophosphate (cAMP) pathway-related factors and inflammatory factors were determined by Real-time PCR. Western blot was employed to determine the expression of cAMP pathway-related factors and connexin 43 (Cx43). ResultsA total of 434 component targets and 545 depression targets were obtained, including 84 common targets, among which 10 core targets were screened out. GO analysis predicted 34 biological processes, 15 cell components, and 11 molecular functions. The KEGG pathways were mainly related to gap junction and cAMP signaling pathway. The core components had good binding affinity with the core targets. The results of animal experiments showed that compared with the control group, CORT prolonged the immobility time of mice in forced swimming and tail suspension tests (P<0.01), lowered the serum levels of NE, BDNF, and 5-HT (P<0.05), up-regulated the mRNA levels of nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) in the brain tissue (P<0.05), and down-regulated the mRNA levels of cyclic adenosine monophosphate effector binding protein (CREB) and BDNF (P<0.05) and the protein levels of protein kinase (PRKACA), phosphorylation (p)-CREB/CREB, BDNF, and Cx43 (P<0.05) in the brain tissue. Compared with the model group, high-dose MA reduced the immobility time of mice in forced swimming (P<0.05) and tail suspension (P<0.01) tests, raised the serum levels of NE, BDNF, and 5-HT (P<0.01), down-regulated the mRNA level of NF-κB (P<0.01), and up-regulated the mRNA level of BDNF (P<0.01) and protein levels of PRKACA, p-CREB/CREB, BDNF, and Cx43 (P<0.05). ConclusionMA alleviates the CORT-induced depressive behavior of mice. It may play an antidepressant role by regulating cAMP signaling pathway and gap junction pathway, improving synaptic plasticity and gap junction function, and reducing neuroinflammation.
6.Mahoniae Caulis Alkaloids Ameliorate Depression by Regulating Synaptic Plasticity via cAMP Pathway
Junhui HE ; Chunlian JIA ; Kedao LAI ; Guili ZHOU ; Rongfei ZHOU ; Yi LI ; Dongmei LI ; Jiaxiu XIE ; Guining WEI ; Juying ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):132-140
ObjectiveTo explore the mechanisms associated with Mahoniae Caulis alkaloids (MA) in ameliorating depression by network pharmacology, molecular docking, and animal experiments. MethodsThe component targets of MA were obtained through Swiss Target Prediction and TCMIP database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. Protein-protein interaction (PPI) network was constructed by protein interaction analysis (STRING) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed through Bioinformatics (DAVID) database. The docking of components and targets was performed by AGFR. The mouse model of depression was established by intraperitoneal injection of corticosterone (CORT) once a day for 35 consecutive days. Sixty mice were randomly allocated into control (0.9% normal saline), model (CORT, 20 mg·kg-1), positive control (fluoxetine hydrochloride, 3.6 mg·kg-1), and MA (10, 5, and 2.5 mg·kg-1) groups. Each group was administrated with corresponding medicine or normal saline once a day for 28 consecutive days. The depression-like behavior of mice was observed. The pathological changes of prefrontal cortex in mice were observed by hematoxylin-eosin staining. Terminal deoxynucleotidyl dUTP transferase nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the prefrontal cortex. Enzyme-linked immunosorbent assay was employed to assess the serum levels of brain-derived neurotrophic factor (BDNF), dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) in mice. The mRNA levels of cyclic adenosine monophosphate (cAMP) pathway-related factors and inflammatory factors were determined by Real-time PCR. Western blot was employed to determine the expression of cAMP pathway-related factors and connexin 43 (Cx43). ResultsA total of 434 component targets and 545 depression targets were obtained, including 84 common targets, among which 10 core targets were screened out. GO analysis predicted 34 biological processes, 15 cell components, and 11 molecular functions. The KEGG pathways were mainly related to gap junction and cAMP signaling pathway. The core components had good binding affinity with the core targets. The results of animal experiments showed that compared with the control group, CORT prolonged the immobility time of mice in forced swimming and tail suspension tests (P<0.01), lowered the serum levels of NE, BDNF, and 5-HT (P<0.05), up-regulated the mRNA levels of nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) in the brain tissue (P<0.05), and down-regulated the mRNA levels of cyclic adenosine monophosphate effector binding protein (CREB) and BDNF (P<0.05) and the protein levels of protein kinase (PRKACA), phosphorylation (p)-CREB/CREB, BDNF, and Cx43 (P<0.05) in the brain tissue. Compared with the model group, high-dose MA reduced the immobility time of mice in forced swimming (P<0.05) and tail suspension (P<0.01) tests, raised the serum levels of NE, BDNF, and 5-HT (P<0.01), down-regulated the mRNA level of NF-κB (P<0.01), and up-regulated the mRNA level of BDNF (P<0.01) and protein levels of PRKACA, p-CREB/CREB, BDNF, and Cx43 (P<0.05). ConclusionMA alleviates the CORT-induced depressive behavior of mice. It may play an antidepressant role by regulating cAMP signaling pathway and gap junction pathway, improving synaptic plasticity and gap junction function, and reducing neuroinflammation.
7.Relationship between physical activity and sarcopenia among elderly people in ten provinces (autonomous regions) of China, 2022—2023
Yuchen WANG ; Huijun WANG ; Yuna HE ; Chang SU ; Jiguo ZHANG ; Wenwen DU ; Xiaofang JIA ; Feifei HUANG ; Li LI ; Jing BAI ; Yanli WEI ; Xiaofan ZHANG ; Fangxu GUAN ; Yifei OUYANG
Journal of Environmental and Occupational Medicine 2025;42(6):661-667
Background The decline of physical activity in the elderly due to aging may increase the risk of sarcopenia. Currently, there is a lack of evidence from large natural populations on the relationship between PA and sarcopenia. Objective To explore the relationship between PA and sarcopenia in the elderly aged 60 years and above in 10 provinces (autonomous regions) of China. Methods Data were retrieved from the 2022—2023 round of the China Development and Nutrition Health Impact Cohort. Personal basic information and PA data were collected by questionnaire survey. Skeletal muscle mass was measured by bio-electrical impedance analysis, muscle strength was measured using a grip dynamometer, and physical performance was reflected by 6-meter walk speed. The Asian Working Group for Sarcopenia (AWGS) 2019 criteria were used to diagnose sarcopenia. Light physical activity (LPA) duration, moderate-to-vigorous physical activity (MVPA) duration, and total physical activity volume were calculated. A total of
8.Association between herbicide exposure and liver enzyme levels in a middle-aged and elderly population
Weiya LI ; Zhuoya ZHAO ; Xu CHENG ; Jun AN ; Shiyang ZHANG ; Chengyong JIA ; Meian HE
Journal of Environmental and Occupational Medicine 2025;42(6):699-705
Background The widespread use of herbicides has led to environmental contamination and has implications for human health. The liver is an important organ for the detoxification of environmental pollutants; however, studies on the association between herbicide exposure and liver function are limited. Objectives To investigate the association between baseline serum herbicide levels and changes in liver enzyme levels and liver enzyme abnormalities over a 5-year period in middle-aged and older adults. Methods This study was based on a nested case-control population of type 2 diabetes established in the Dongfeng-Tongji cohort, with a total of
9.Anti-tumor Effect and Mechanism of Active Ingredients from Yin-nourishing Chinese Herbs: A Review
Qimeng FAN ; Yanran HE ; Liangshan MING ; Zishu DONG ; Yingjiao LIU ; Zhixin LI ; Jia HUANG ; Hongning LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):252-265
Tumor has become a major disease that seriously threatens human health and life. The incidence rate is increasing year by year, yet the underlying mechanisms remain incompletely understood. Traditional Chinese medicine (TCM), a treasure of the Chinese nation and a wealth for people worldwide, plays an important role in the treatment of tumors and has been receiving increasing attention both in China and abroad. In earlier work, based on the symptoms and metastatic characteristics of tumors, and drawing on the TCM theory of Yin and Yang in combination with modern medical research on tumors, the ''Yin deficiency-cancer correlation'' hypothesis was proposed. This hypothesis holds that ''Yin deficiency'' of the body is a major cause of malignant tumors, and that nourishing Yin to eliminate the pathogenic factor of Yin deficiency can treat cancer. By using Yin-nourishing drugs to tonify Yin deficiency, the occurrence and development of malignant tumors can be effectively prevented. Common anti-tumor Yin-nourishing drugs include Glehniae Radix, Lilii Bulbus, Ophiopogonis Radix, Liriopes Radix, Asparagi Radix, Dendrobii Caulis, Dendrobii Officinalis Caulis, Polygonati Odorati Rhizoma, Polygonati Rhizoma, Lycii Fructus, Mori Fructus, Ligustri Lucidi Fructus, Ecliptae Herba, Rehmanniae Radix, and Anemarrhenae Rhizoma. These drugs are generally sweet in flavor, cold and cool in nature, and moist in texture. They have the functions of nourishing Yin fluids, generating body fluids, and moistening dryness, and can also clear heat, being primarily indicated for Yin deficiency with depletion of body fluids. In view of the potential advantages and value of treating malignant tumors by tonifying Yin deficiency with Chinese medicine, this paper reviews recent studies on the anti-tumor effects of active components of Yin-nourishing drugs. It further summarizes their mechanisms of action in inducing apoptosis of tumor cells, arresting tumor cell proliferation, inhibiting tumor invasion, metastasis, and angiogenesis, enhancing and regulating immune function, augmenting the efficacy of chemotherapeutic drugs, and reversing tumor drug resistance. This study provides an objective overview of research progress on Yin-nourishing drugs in tumor treatment and offers new ideas for cancer therapy.
10.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.

Result Analysis
Print
Save
E-mail