1.Effect comparison of flat loop with double C-loop Toric intraocular lenses on astigmatism correction based on standard astigmatism vector analysis
Jintao XIA ; Jia LIU ; Mi HAO ; Ting MA ; Lina CHENG
International Eye Science 2025;25(4):632-637
AIM:To compare the effect of AT TORBI 709M and Tecnis ZMT intraocular lenses on astigmatism correction in patients with corneal astigmatism at 3 mo after operation based on the standard astigmatism vector analysis.METHODS: This was a retrospective case-control study. The clinical data of 69 patients(69 eyes)with corneal astigmatism who underwent phacoemulsification and implantation of toric intraocular lens(IOL)from June 2021 to December 2021 in Day Surgery Center of Xi'an No.1 Hospital was analyzed. The patients were divided into two groups. In group one, 38 cases(38 eyes)were implanted with AT TORBI 709M, and 31 patients(31 eyes)with Tecnis ZMT in group two. The axial length, preoperative astigmatism and axis, and the degree of intraocular lens were recorded. The uncorrected distance visual acuity(UCDVA), best corrected distance visual acuity(BCDVA), diopter, residual astigmatism and axis were recorded preoperatively and at 1 wk, 1 and 3 mo postoperatively. The postoperative surgical indicators, including spherical equivalent(SE), target induced astigmatism vector(TIA), surgically induced astigmatism vector(SIA), magnitude of error(ME), absolute value of angle of error(|AE|), absolute value of difference vector(|DV|), correction index(CI), and index of success(IOS)were evaluated by the standard astigmatism vector analysis.RESULTS:Postoperative UCDVA and BCDVA were significantly improved(all P<0.001), and there were statistically significant differences compared to preoperative UCDVA and BCDVA(all P<0.001). While, there was no significant difference in UCDVA and BCDVA between the two groups(P=0.275, 0.124). The standard astigmatism vector analysis showed that a good astigmatism correction was achieved in both AT TORBI 709M group and Tecnis ZMT group, and both |DV| and IOS were close to 0(P=0.329, 0.288). The CI of the AT TORBI 709M group was closer to 1, indicating a better astigmatism correction, while the CI of the Tecnis ZMT group was higher than 1, suggesting an overcorrection of astigmatism. However, the difference between the two groups was not statistically significant(P=0.193). The mean residual astigmatism at 3 mo postoperatively was -0.11±0.91 D in the AT TORBI 709M group and -0.46±0.76 D in the Tecnis ZMT group, respectively, showing no statistically significance difference(t=1.732, P=0.088).CONCLUSION:Both the flat loop AT TORBI 709M and the double C-loop Tecnis ZMT intraocular lenses can effectively improve postoperative visual acuity in patients with regular corneal astigmatism, showing good rotational stability and comparable correction abilities for both astigmatism with the rule and against-the-rule astigmatism.
2.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
3.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
4.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
5.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
6.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
7.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
8.WANG Xiuxia's Clinical Experience in Treating Hyperprolactinemia with Liver Soothing Therapy
Yu WANG ; Danni DING ; Yuehui ZHANG ; Songli HAO ; Meiyu YAO ; Ying GUO ; Yang FU ; Ying SHEN ; Jia LI ; Fangyuan LIU ; Fengjuan HAN
Journal of Traditional Chinese Medicine 2025;66(14):1428-1432
This paper summarizes Professor WANG Xiuxia's clinical experience in treating hyperprolactinemia using the liver soothing therapy. Professor WANG identifies liver qi stagnation and rebellious chong qi (冲气) as the core pathomechanisms of hyperprolactinemia. Furthermore, liver qi stagnation may transform into fire or lead to pathological changes such as spleen deficiency with phlegm obstruction or kidney deficiency with essence depletion. The treatment strategy centers on soothing the liver, with a modified version of Qinggan Jieyu Decoction (清肝解郁汤) as the base formula. Depending on different syndrome patterns such as liver stagnation transforming into fire, liver stagnation with spleen deficiency, or liver stagnation with kidney deficiency, heat clearing, spleen strengthening, or kidney tonifying herbs are added accordingly. In addition, three paired herb combinations are commonly used for symptom specific treatment, Danggui (Angelica sinensis) with Chuanxiong (Ligusticum chuanxiong), Zelan (Lycopus lucidus) with Yimucao (Leonurus japonicus) , and Jiegeng (Platycodon grandiflorus) with Zisu (Perilla frutescens).
9.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
10.Analysis of cases of reinfection of past SARS-CoV-2 patients in Pudong New Area of Shanghai
Ge ZHANG ; Anran ZHANG ; Yilin JIA ; Li ZHANG ; Lipeng HAO ; Hongmei XU ; Yuanping WANG ; Chuchu YE ; Bo LIU ; Weiping ZHU ; Yixin ZHOU
Shanghai Journal of Preventive Medicine 2024;36(2):117-122
ObjectiveTo identify the rate, population characteristics, and vaccination history of repeat infections among previously infected people in the current epidemic based on the rate of repeat infection and population characteristics of different mutant strains at different times in Pudong New Area of Shanghai, and to provide reference for the prevention and control strategies of novel coronavirus repeat infections. MethodsA total of 9 250 investigated subjects were randomly selected from the new cases of asymptomatic infection and confirmed cases reported by Pudong New Area from March to May 2022. The investigation mainly focused on demographic characteristics, nucleic acid or antigen test results, and symptoms after infection. The repeat infection rates among different populations were compared, and logistic regression was used to analyze the impact of gender, age, and vaccination status on repeat infections. ResultsThe survey sample of 9 250 people had a response rate of 81.85%. There were 4 043 males (53.40%) and 3 528 females (46.60%), with a median age of 34 years old (P25, P75: 7, 61). The overall vaccine uptake rate was 59.44% (4 500/7 571). In December of 2022, there were 563 cases of repeat infection, with an infection rate of 7.44%. The lowest rate of repeat infection was seen in the 3‒ year-old group (2.86%) and the highest rate in the 30‒ year-old group (12.42%), with significant differences between different age groups. The repeated infection rate for those who had completed their vaccinations was significantly lower (6.57%) compared to those who had not (7.11%). The age groups of 3‒ years, 70‒79 years, as well as individuals who completed full vaccination and received booster shots were protective factors against repeat infections. ConclusionThe overall rate of reinfection among the infected in Shanghai during the spring of 2022 was low in the outbreak of the Omicron variant, and the rate of reinfection in the 3‒ year-old group was significantly lower than in other age groups. Completing the full course of vaccination significantly reduces the risk of reinfection. Although the reinfection rate is high in individuals who received booster shots, it remains a mitigating factor compared to those who do not receive the vaccine. It is recommended to continue monitoring reinfections in key populations and further strengthen immunization efforts.

Result Analysis
Print
Save
E-mail