1.Mahoniae Caulis Alkaloids Ameliorate Depression by Regulating Synaptic Plasticity via cAMP Pathway
Junhui HE ; Chunlian JIA ; Kedao LAI ; Guili ZHOU ; Rongfei ZHOU ; Yi LI ; Dongmei LI ; Jiaxiu XIE ; Guining WEI ; Juying ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):132-140
ObjectiveTo explore the mechanisms associated with Mahoniae Caulis alkaloids (MA) in ameliorating depression by network pharmacology, molecular docking, and animal experiments. MethodsThe component targets of MA were obtained through Swiss Target Prediction and TCMIP database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. Protein-protein interaction (PPI) network was constructed by protein interaction analysis (STRING) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed through Bioinformatics (DAVID) database. The docking of components and targets was performed by AGFR. The mouse model of depression was established by intraperitoneal injection of corticosterone (CORT) once a day for 35 consecutive days. Sixty mice were randomly allocated into control (0.9% normal saline), model (CORT, 20 mg·kg-1), positive control (fluoxetine hydrochloride, 3.6 mg·kg-1), and MA (10, 5, and 2.5 mg·kg-1) groups. Each group was administrated with corresponding medicine or normal saline once a day for 28 consecutive days. The depression-like behavior of mice was observed. The pathological changes of prefrontal cortex in mice were observed by hematoxylin-eosin staining. Terminal deoxynucleotidyl dUTP transferase nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the prefrontal cortex. Enzyme-linked immunosorbent assay was employed to assess the serum levels of brain-derived neurotrophic factor (BDNF), dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) in mice. The mRNA levels of cyclic adenosine monophosphate (cAMP) pathway-related factors and inflammatory factors were determined by Real-time PCR. Western blot was employed to determine the expression of cAMP pathway-related factors and connexin 43 (Cx43). ResultsA total of 434 component targets and 545 depression targets were obtained, including 84 common targets, among which 10 core targets were screened out. GO analysis predicted 34 biological processes, 15 cell components, and 11 molecular functions. The KEGG pathways were mainly related to gap junction and cAMP signaling pathway. The core components had good binding affinity with the core targets. The results of animal experiments showed that compared with the control group, CORT prolonged the immobility time of mice in forced swimming and tail suspension tests (P<0.01), lowered the serum levels of NE, BDNF, and 5-HT (P<0.05), up-regulated the mRNA levels of nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) in the brain tissue (P<0.05), and down-regulated the mRNA levels of cyclic adenosine monophosphate effector binding protein (CREB) and BDNF (P<0.05) and the protein levels of protein kinase (PRKACA), phosphorylation (p)-CREB/CREB, BDNF, and Cx43 (P<0.05) in the brain tissue. Compared with the model group, high-dose MA reduced the immobility time of mice in forced swimming (P<0.05) and tail suspension (P<0.01) tests, raised the serum levels of NE, BDNF, and 5-HT (P<0.01), down-regulated the mRNA level of NF-κB (P<0.01), and up-regulated the mRNA level of BDNF (P<0.01) and protein levels of PRKACA, p-CREB/CREB, BDNF, and Cx43 (P<0.05). ConclusionMA alleviates the CORT-induced depressive behavior of mice. It may play an antidepressant role by regulating cAMP signaling pathway and gap junction pathway, improving synaptic plasticity and gap junction function, and reducing neuroinflammation.
2.Mahoniae Caulis Alkaloids Ameliorate Depression by Regulating Synaptic Plasticity via cAMP Pathway
Junhui HE ; Chunlian JIA ; Kedao LAI ; Guili ZHOU ; Rongfei ZHOU ; Yi LI ; Dongmei LI ; Jiaxiu XIE ; Guining WEI ; Juying ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):132-140
ObjectiveTo explore the mechanisms associated with Mahoniae Caulis alkaloids (MA) in ameliorating depression by network pharmacology, molecular docking, and animal experiments. MethodsThe component targets of MA were obtained through Swiss Target Prediction and TCMIP database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. Protein-protein interaction (PPI) network was constructed by protein interaction analysis (STRING) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed through Bioinformatics (DAVID) database. The docking of components and targets was performed by AGFR. The mouse model of depression was established by intraperitoneal injection of corticosterone (CORT) once a day for 35 consecutive days. Sixty mice were randomly allocated into control (0.9% normal saline), model (CORT, 20 mg·kg-1), positive control (fluoxetine hydrochloride, 3.6 mg·kg-1), and MA (10, 5, and 2.5 mg·kg-1) groups. Each group was administrated with corresponding medicine or normal saline once a day for 28 consecutive days. The depression-like behavior of mice was observed. The pathological changes of prefrontal cortex in mice were observed by hematoxylin-eosin staining. Terminal deoxynucleotidyl dUTP transferase nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the prefrontal cortex. Enzyme-linked immunosorbent assay was employed to assess the serum levels of brain-derived neurotrophic factor (BDNF), dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) in mice. The mRNA levels of cyclic adenosine monophosphate (cAMP) pathway-related factors and inflammatory factors were determined by Real-time PCR. Western blot was employed to determine the expression of cAMP pathway-related factors and connexin 43 (Cx43). ResultsA total of 434 component targets and 545 depression targets were obtained, including 84 common targets, among which 10 core targets were screened out. GO analysis predicted 34 biological processes, 15 cell components, and 11 molecular functions. The KEGG pathways were mainly related to gap junction and cAMP signaling pathway. The core components had good binding affinity with the core targets. The results of animal experiments showed that compared with the control group, CORT prolonged the immobility time of mice in forced swimming and tail suspension tests (P<0.01), lowered the serum levels of NE, BDNF, and 5-HT (P<0.05), up-regulated the mRNA levels of nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) in the brain tissue (P<0.05), and down-regulated the mRNA levels of cyclic adenosine monophosphate effector binding protein (CREB) and BDNF (P<0.05) and the protein levels of protein kinase (PRKACA), phosphorylation (p)-CREB/CREB, BDNF, and Cx43 (P<0.05) in the brain tissue. Compared with the model group, high-dose MA reduced the immobility time of mice in forced swimming (P<0.05) and tail suspension (P<0.01) tests, raised the serum levels of NE, BDNF, and 5-HT (P<0.01), down-regulated the mRNA level of NF-κB (P<0.01), and up-regulated the mRNA level of BDNF (P<0.01) and protein levels of PRKACA, p-CREB/CREB, BDNF, and Cx43 (P<0.05). ConclusionMA alleviates the CORT-induced depressive behavior of mice. It may play an antidepressant role by regulating cAMP signaling pathway and gap junction pathway, improving synaptic plasticity and gap junction function, and reducing neuroinflammation.
3.Relationship between physical activity and sarcopenia among elderly people in ten provinces (autonomous regions) of China, 2022—2023
Yuchen WANG ; Huijun WANG ; Yuna HE ; Chang SU ; Jiguo ZHANG ; Wenwen DU ; Xiaofang JIA ; Feifei HUANG ; Li LI ; Jing BAI ; Yanli WEI ; Xiaofan ZHANG ; Fangxu GUAN ; Yifei OUYANG
Journal of Environmental and Occupational Medicine 2025;42(6):661-667
Background The decline of physical activity in the elderly due to aging may increase the risk of sarcopenia. Currently, there is a lack of evidence from large natural populations on the relationship between PA and sarcopenia. Objective To explore the relationship between PA and sarcopenia in the elderly aged 60 years and above in 10 provinces (autonomous regions) of China. Methods Data were retrieved from the 2022—2023 round of the China Development and Nutrition Health Impact Cohort. Personal basic information and PA data were collected by questionnaire survey. Skeletal muscle mass was measured by bio-electrical impedance analysis, muscle strength was measured using a grip dynamometer, and physical performance was reflected by 6-meter walk speed. The Asian Working Group for Sarcopenia (AWGS) 2019 criteria were used to diagnose sarcopenia. Light physical activity (LPA) duration, moderate-to-vigorous physical activity (MVPA) duration, and total physical activity volume were calculated. A total of
4.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
5.Clinical Efficacy of Xiaoji Hufei Formula in Protecting Children with Close Contact Exposure to Influenza: A Multicenter,Prospective, Non-randomized, Parallel, Controlled Trial
Jing WANG ; Jianping LIU ; Tiegang LIU ; Hong WANG ; Yingxin FU ; Jing LI ; Huaqing TAN ; Yingqi XU ; Yanan MA ; Wei WANG ; Jia WANG ; Haipeng CHEN ; Yuanshuo TIAN ; Yang WANG ; Chen BAI ; Zhendong WANG ; Qianqian LI ; He YU ; Xueyan MA ; Fei DONG ; Liqun WU ; Xiaohong GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):223-230
ObjectiveTo evaluate the efficacy and safety of Xiaoji Hufei Formula in protecting children with close contact exposure to influenza, and to provide reference and evidence-based support for better clinical prevention and treatment of influenza in children. MethodsA multicenter, prospective, non-randomized, parallel, controlled trial was conducted from October 2021 to May 2022 in five hospitals, including Dongfang Hospital of Beijing University of Chinese Medicine. Confirmed influenza cases and influenza-like illness (ILI) cases were collected, and eligible children with close contact exposure to these cases were recruited in the outpatient clinics. According to whether the enrolled close contacts were willing to take Xiaoji Hufei formula for influenza prevention, they were assigned to the observation group (108 cases) or the control group (108 cases). Follow-up visits were conducted on days 7 and 14 after enrollment. The primary outcomes were the incidence of ILI and the rate of laboratory-confirmed influenza. Secondary outcomes included traditional Chinese medicine (TCM) symptom score scale for influenza, influenza-related emergency (outpatient) visit rate, influenza hospitalization rate, and time to onset after exposure to influenza cases. ResultsA total of 216 participants were enrolled, with 108 in the observation group and 108 in the control group. Primary outcomes: (1) Incidence of ILI: The incidence was 12.0% (13/108) in the observation group and 23.1% (25/108) in the control group, with the observation group showing a significantly lower incidence (χ2=4.6, P<0.05). (2) Influenza confirmation rate: 3.7% (4/108) in the observation group and 4.6% (5/108) in the control group, with no statistically significant difference. Secondary outcomes: (1) TCM symptom score scale: after onset, nasal congestion and runny nose scores differed significantly between the two groups (P<0.05), while other symptoms such as fever, sore throat, and cough showed no significant differences. (2) Influenza-related emergency (outpatient) visit rate: 84.6% (11 cases) in the observation group and 96.0% (24 cases) in the control group, with no significant difference. (3) Time to onset after exposure: The median onset time after exposure to index patients was 7 days in the observation group and 4 days in the control group, with a statistically significant difference (P<0.05). ConclusionIn previously healthy children exposed to infectious influenza cases under unprotected conditions, Xiaoji Hufei formula prophylaxis significantly reduced the incidence of ILI. Xiaoji Hufei Formula can be recommended as a specific preventive prescription for influenza in children.
6.Clinical Efficacy of Xiaoji Hufei Formula in Protecting Children with Close Contact Exposure to Influenza: A Multicenter,Prospective, Non-randomized, Parallel, Controlled Trial
Jing WANG ; Jianping LIU ; Tiegang LIU ; Hong WANG ; Yingxin FU ; Jing LI ; Huaqing TAN ; Yingqi XU ; Yanan MA ; Wei WANG ; Jia WANG ; Haipeng CHEN ; Yuanshuo TIAN ; Yang WANG ; Chen BAI ; Zhendong WANG ; Qianqian LI ; He YU ; Xueyan MA ; Fei DONG ; Liqun WU ; Xiaohong GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):223-230
ObjectiveTo evaluate the efficacy and safety of Xiaoji Hufei Formula in protecting children with close contact exposure to influenza, and to provide reference and evidence-based support for better clinical prevention and treatment of influenza in children. MethodsA multicenter, prospective, non-randomized, parallel, controlled trial was conducted from October 2021 to May 2022 in five hospitals, including Dongfang Hospital of Beijing University of Chinese Medicine. Confirmed influenza cases and influenza-like illness (ILI) cases were collected, and eligible children with close contact exposure to these cases were recruited in the outpatient clinics. According to whether the enrolled close contacts were willing to take Xiaoji Hufei formula for influenza prevention, they were assigned to the observation group (108 cases) or the control group (108 cases). Follow-up visits were conducted on days 7 and 14 after enrollment. The primary outcomes were the incidence of ILI and the rate of laboratory-confirmed influenza. Secondary outcomes included traditional Chinese medicine (TCM) symptom score scale for influenza, influenza-related emergency (outpatient) visit rate, influenza hospitalization rate, and time to onset after exposure to influenza cases. ResultsA total of 216 participants were enrolled, with 108 in the observation group and 108 in the control group. Primary outcomes: (1) Incidence of ILI: The incidence was 12.0% (13/108) in the observation group and 23.1% (25/108) in the control group, with the observation group showing a significantly lower incidence (χ2=4.6, P<0.05). (2) Influenza confirmation rate: 3.7% (4/108) in the observation group and 4.6% (5/108) in the control group, with no statistically significant difference. Secondary outcomes: (1) TCM symptom score scale: after onset, nasal congestion and runny nose scores differed significantly between the two groups (P<0.05), while other symptoms such as fever, sore throat, and cough showed no significant differences. (2) Influenza-related emergency (outpatient) visit rate: 84.6% (11 cases) in the observation group and 96.0% (24 cases) in the control group, with no significant difference. (3) Time to onset after exposure: The median onset time after exposure to index patients was 7 days in the observation group and 4 days in the control group, with a statistically significant difference (P<0.05). ConclusionIn previously healthy children exposed to infectious influenza cases under unprotected conditions, Xiaoji Hufei formula prophylaxis significantly reduced the incidence of ILI. Xiaoji Hufei Formula can be recommended as a specific preventive prescription for influenza in children.
7.Research Progress of Fluorescence Detection Response Mechanism of Organic Small Molecular Probes to Peroxynitrite Anion
Jia-Xin CHEN ; Qin-Qin TIAN ; Wei HE
Chinese Journal of Analytical Chemistry 2024;52(2):166-177
Peroxynitrite anion(ONOO?)is one of the most active species of reactive oxygen species(ROS)and reactive nitrogen species(RNS).As an important physiologically active molecule,the abnormal expression of ONOO?will damage the protein and DNA in cells,leading to inflammation and other serious diseases in vivo.In recent years,fluorescence detection technology has been used to realize rapid and sensitive monitoring of bioactive molecules,and imaging tools have been used to conduct high-resolution tracing.Therefore,many organic small molecule fluorescent probes have been developed to detect ONOO?.In this paper,the recent research progresses of ONOO? fluorescence detection methods based on intramolecular charge transfer(ICT),photoinduced electron transfer(PET),fluorescence resonance energy transfer(FRET),excited state intramolecular charge transfer(ESIPT)and other fluorescence response mechanisms were reviewed.
8.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
9.Cardiac MR tissue tracking technique for quantitatively evaluating myocardial strain of cardiac amyloidosis patients
Jiangkai HE ; Chen CUI ; Wei MA ; Zhi WANG ; Jia LIU ; Wei LI ; Kai ZHAO ; Rile NAI ; Shasha XU ; Jianxing QIU
Chinese Journal of Interventional Imaging and Therapy 2024;21(1):42-47
Objective To observe the feasibility of cardiac MR tissue tracking(CMR-TT)technique for quantitatively evaluating myocardial strain of patients with myocardial amyloidosis(CA).Methods Cardiac MRI were collected from 20 patients of immunoglobulin amyloid light-chain CA(AL-CA,group A),20 cases of transthyretin CA(ATTR-CA,group B)and 20 healthy subjects(group C),and myocardial strain parameters were obtained using CMR-TT technique.Left ventricular cardiac function parameters were compared among 3 groups,so were strain parameters of each myocardial segment of left ventricle and global myocardium,including 3D longitudinal strain(LS),3D radial strain(RS)and 3D circumferential strain(CS).Results Compared with those in group C,significant differences of left ventricular cardiac function parameters were found in both group A and B(all P<0.01),while no statistical difference was found between group A and B(all P>0.05).Except for apical segment RS(P=0.81),strain parameters in group A and B were both lower than those in group C(all P<0.01),while no significant difference was detected between group A and B(all P>0.05).Conclusion CMR-TT technique could be used to quantitatively evaluate left ventricular myocardial strain of CA patients.
10.Study on the characteristics of lymphocyte-specfic protein-tyrosine kinase methylation in the peripheral blood circulation of patients with rheumatoid arthritis
Lingxia XU ; Cen CHANG ; Ping JIANG ; Kai WEI ; Jia′nan ZHAO ; Yixin ZHENG ; Yu SHAN ; Yiming SHI ; Hua Ye JIN ; Yi SHEN ; Shicheng GUO ; Dongyi HE ; Jia LIU
Chinese Journal of Rheumatology 2024;28(3):155-161
Objective:To analyze the methylation characteristics of the lymphocyte-specific protein-tyrosine kinase (LCK) promoter region in the peripheral blood circulation of rheumatoid arthritis (RA) patients and its correlation with clinical indicators.Methods:Targeted methylation sequencing was used to compare the methylation levels of 7 CpG sites in the LCK promoter region in the peripheral blood of RA patients with healthy controls (HC) and osteoarthritis (OA) patients. Correlation analysis and ROC curve construction were performed with clinical information.Results:Non-parametric tests revealed that compared with HC [0.53(0.50, 0.57)] and OA patients [0.59(0.54, 0.62), H=47.17, P<0.001], RA patients [0.63(0.59, 0.68)] exhibited an overall increase in methylation levels. Simultaneously, when compared with the HC group [0.38(0.35, 0.41), 0.59(0.55, 0.63), 0.60(0.55, 0.64), 0.59(0.55, 0.63), 0.58(0.53, 0.62), 0.45(0.43, 0.49), 0.57(0.54, 0.61)], the RA group [0.46(0.42, 0.49), 0.70(0.65, 0.75), 0.70(0.66, 0.76), 0.70(0.65, 0.75), 0.69(0.64, 0.74), 0.55(0.51, 0.59), 0.68(0.63, 0.73)] showed a significant elevation in methylation levels at CpG sites cg05350315_60, cg05350315_80, cg05350315_95, cg05350315_101, cg05350315_104, cg05350315_128, and cg05350315_142, with statistically significant differences ( Z=-5.63, -5.89, -5.91, -5.89, -5.98, -5.95, -5.95, all P<0.001). Compared with the OA group [0.65(0.59, 0.69), 0.65(0.60, 0.69), 0.64(0.58, 0.68), 0.50(0.45, 0.54), 0.63(0.58, 0.67)], the RA group [0.70(0.66, 0.76), 0.70(0.65, 0.75), 0.69(0.64, 0.74), 0.55(0.51, 0.59), 0.68(0.63, 0.73)] exhibited a significant increase in methylation levels at CpG sites cg05350315_95, cg05350315_101, cg05350315_104, cg05350315_128, and cg05350315_142, with statistically significant differences ( Z=-3.56, -3.52, -3.60, -3.67, -3.62; P=0.036, 0.042, 0.031, 0.030, 0.030). Furthermore, Pearson correlation coefficient analysis revealed a positive correlation between the overall methylation level in this region and C-reactive protein (CRP) ( r=0.19, P=0.004) and erythrocyte sedimentation rate ( r=0.14, P=0.035). The overall methylation level of the LCK promoter region in the CRP (low) group [0.63 (0.58, 0.68)] was higher than that in the CRP (high) group [0.65(0.61, 0.70)], with statistically significant differences ( Z=2.60, P=0.009). Finally, by constru-cting a ROC curve, the discriminatory efficacy of peripheral blood LCK promoter region methylation levels for identifying RA patients, especially seronegative RA patients, from HC and OA groups was validated, with an AUC value of 0.78 (95% CI: 0.63, 0.93). Conclusion:This study provides insights into the methylation status and methylation haplotype patterns of the LCK promoter region in the peripheral blood of RA patients. The overall methylation level in this region is positively correlated with the level of inflammation and can be used to differentiate seronegative RA patients from the HC and OA patients.

Result Analysis
Print
Save
E-mail