1.Plasma miRNA testing in the differential diagnosis of very early-stage hepatocellular carcinoma: a multicenter real-world study
Jie HU ; Ying XU ; Ao HUANG ; Lei YU ; Zheng WANG ; Xiaoying WANG ; Xinrong YANG ; Zhenbin DING ; Qinghai YE ; Yinghong SHI ; Shuangjian QIU ; Huichuan SUN ; Qiang GAO ; Jia FAN ; Jian ZHOU
Chinese Journal of Clinical Medicine 2025;32(3):350-354
		                        		
		                        			
		                        			Objective To explore the application of plasma 7 microRNA (miR7) testing in the differential diagnosis of very early-stage hepatocellular carcinoma (HCC). Methods This study is a multicenter real-world study. Patients with single hepatic lesion (maximum diameter≤2 cm) who underwent plasma miR7 testing at Zhongshan Hospital, Fudan University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Anhui Provincial Hospital, and Peking University People’s Hospital between January 2019 and December 2024 were retrospectively enrolled. Patients were divided into very early-stage HCC group and non-HCC group, and the clinical pathological characteristics of the two groups were compared. The value of plasma miR7 levels, alpha-fetoprotein (AFP), and des-gamma-carboxy prothrombin (DCP) in the differential diagnosis of very early-stage HCC was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC). In patients with both negative AFP and DCP (AFP<20 ng/mL, DCP<40 mAU/mL), the diagnostic value of plasma miR7 for very early-stage HCC was analyzed. Results A total of 64 528 patients from 4 hospitals underwent miR7 testing, and 1 682 were finally included, of which 1 073 were diagnosed with very early-stage HCC and 609 were diagnosed with non-HCC. The positive rate of miR7 in HCC patients was significantly higher than that in non-HCC patients (67.9% vs 24.3%, P<0.001). ROC curves showed that the AUCs for miR7, AFP, and DCP in distinguishing HCC patients from the non-HCC individuals were 0.718, 0.682, and 0.642, respectively. The sensitivities were 67.85%, 43.71%, and 44.45%, and the specificities were 75.70%, 92.78%, and 83.91%, respectively. The pairwise comparison of AUCs showed that the diagnostic efficacy of plasma miR7 detection was significantly better than that of AFP or DCP (P<0.05). Although its specificity was slightly lower than AFP and DCP, the sensitivity was significantly higher. Among patients negative for both AFP and DCP, miR7 maintained an AUC of 0.728 for diagnosing very early-stage HCC, with 67.82% sensitivity and 77.73% specificity. Conclusions Plasma miR7 testing is a potential molecular marker with high sensitivity and specificity for the differential diagnosis of small hepatic nodules. In patients with very early-stage HCC lacking effective molecular markers (negative for both AFP and DCP), miR7 can serve as a novel and effective molecular marker to assist diagnosis.
		                        		
		                        		
		                        		
		                        	
2.WANG Xiuxia's Clinical Experience in Treating Hyperprolactinemia with Liver Soothing Therapy
Yu WANG ; Danni DING ; Yuehui ZHANG ; Songli HAO ; Meiyu YAO ; Ying GUO ; Yang FU ; Ying SHEN ; Jia LI ; Fangyuan LIU ; Fengjuan HAN
Journal of Traditional Chinese Medicine 2025;66(14):1428-1432
		                        		
		                        			
		                        			This paper summarizes Professor WANG Xiuxia's clinical experience in treating hyperprolactinemia using the liver soothing therapy. Professor WANG identifies liver qi stagnation and rebellious chong qi (冲气) as the core pathomechanisms of hyperprolactinemia. Furthermore, liver qi stagnation may transform into fire or lead to pathological changes such as spleen deficiency with phlegm obstruction or kidney deficiency with essence depletion. The treatment strategy centers on soothing the liver, with a modified version of Qinggan Jieyu Decoction (清肝解郁汤) as the base formula. Depending on different syndrome patterns such as liver stagnation transforming into fire, liver stagnation with spleen deficiency, or liver stagnation with kidney deficiency, heat clearing, spleen strengthening, or kidney tonifying herbs are added accordingly. In addition, three paired herb combinations are commonly used for symptom specific treatment, Danggui (Angelica sinensis) with Chuanxiong (Ligusticum chuanxiong), Zelan (Lycopus lucidus) with Yimucao (Leonurus japonicus) , and Jiegeng (Platycodon grandiflorus) with Zisu (Perilla frutescens). 
		                        		
		                        		
		                        		
		                        	
3.Development of an Analytical Software for Forensic Proteomic SAP Typing
Feng HU ; Meng-Jiao WANG ; Jia-Lei WU ; Dong-Sheng DING ; Zhi-Yuan YANG ; An-Quan JI ; Lei FENG ; Jian YE
Progress in Biochemistry and Biophysics 2025;52(9):2406-2416
		                        		
		                        			
		                        			ObjectiveThe proteome of biological evidence contains rich genetic information, namely single amino acid polymorphisms (SAPs) in protein sequences. However, due to the lack of efficient and convenient analysis tools, the application of SAP in public security still faces many challenges. This paper aims to meet the application requirements of SAP analysis for forensic biological evidence’s proteome data. MethodsThe software is divided into three modules. First, based on a built-in database of common non-synonymous single nucleotide polymorphisms (nsSNPs) and SAPs in East Asian populations, the software integrates and annotates newly identified exonic nsSNPs as SAPs, thereby constructing a customized SAP protein sequence database. It then utilizes a pre-installed search engine—either pFind or MaxQuant—to perform analysis and output SAP typing results, identifying both reference and variant types, along with their corresponding imputed nsSNPs. Finally, SAPTyper compares the proteome-based typing results with the individual’s exome-derived nsSNP profile and outputs the comparison report. ResultsSAPTyper accepts proteomic DDA mass spectrometry raw data (DDA acquisition mode) and exome sequencing results of nsSNPs as input and outputs the report of SAPs result. The pFind and Maxquant search engines were used to test the proteome data of 2 hair shafts of2 individuals, and both obtained SAP results. It was found that the results of the Maxquant search engine were slightly less than those of pFind. This result shows that SAPTyper can achieve SAP fingding function. Moreover, the pFind search engine was used to test the proteome data of 3 hair shafts from 1 European person and 1 African person in the literature. Among the sites fully matched by the literature method, sites detected by SAPTyper are also included; for semi-matching sites, that is, nsSNPs are heterozygous, both literature method and SAPTyper method had the risk of missing detection for one type of the allele. Comparing the analysis results of SAPTyper with the SAP test results reported in the literature, it was found that some imputed nsSNP sites identified by the literature method but not detected by SAPTyper had a MAF of less than 0.1% in East Asian populations, and therefore they were not included in the common nsSNP database of East Asian populations constructed by this software. Since the database construction of this software is based on the genetic variation information of East Asian populations, it is currently unable to effectively identify representative unique common variation sites in European or African populations, but it can still identify SAP sites shared by these populations and East Asian populations. ConclusionAn automated SAP analysis algorithm was developed for East Asian populations, and the software named SAPTyper was developed. This software provides a convenient and efficient analysis tool for the research and application of forensic proteomic SAP and has important application prospects in individual identification and phenotypic inference based on SAP. 
		                        		
		                        		
		                        		
		                        	
4.Safety analysis of Yttrium-90 resin microsphere selective internal radiation therapy on malignant liver tumors
Jia CAI ; Shiwei TANG ; Rongli LI ; Mingxin KONG ; Hongyan DING ; Xiaofeng YUAN ; Yuying HU ; Ruimei LIU ; Xiaoyan ZHU ; Wenjun LI ; Haibin ZHANG ; Guanwu WANG
Chinese Journal of Clinical Medicine 2025;32(1):24-29
		                        		
		                        			
		                        			Objective To explore the safety of Yttrium-90 resin microsphere selective internal radiation therapy (90Y-SIRT) on malignant liver tumors. Methods A retrospective analysis was conducted on 64 patients with malignant liver tumors who underwent 90Y-SIRT from February 2023 to November 2024 at Weifang People’s Hospital. The clinical characteristics of the patients and the occurrence of adverse reactions after treatment were analyzed to assess the safety of 90Y-SIRT. Results Among the 64 patients, there were 52 males (81.25%) and 12 females (18.75%); the average age was (56.29±11.08) years. Seven patients (10.94%) had tumors with maximum diameter of less than 5 cm, 38 patients (59.38%) had tumors with maximum diameter of 5-10 cm, and 19 patients (29.68%) had tumors with maximum diameter of greater than 10 cm. There were 47 cases (73.44%) of solitary lesions and 17 cases (26.56%) of multiple lesions; 53 cases (82.81%) were primary liver cancers and 11 cases (17.19%) were metastatic liver cancers. Of the 64 patients, 63 successfully completed the Technetium-99m macroaggregated albumin (99mTc-MAA) perfusion test and received the 90Y-SIRT; one patient received 90Y-SIRT after the second 99mTc-MAA perfusion test due to a work error. The most common adverse reactions included grade 1 alanine aminotransferase (ALT) elevation in 26 cases (40.62%) and grade 2 in 2 cases (9.37%), grade 1 aspartate aminotransferase (AST) elevation in 27 cases (42.18%) and grade 2 in 7 cases (10.93%); grade 1 nausea in 17 cases (26.56%) and grade 2 in 6 cases (9.37%); grade 1 abdominal pain in 12 cases (18.75%), grade 2 in 5 cases (7.81%), and grade 3 in 1 case (1.56%); grade 1 vomiting in 11 cases (17.18%), grade 2 in 5 cases (7.81%), and grade 3 in 1 case (1.56%). Conclusion The adverse reactions of 90Y-SIRT for treating malignant liver tumors are mild, indicating good safety.
		                        		
		                        		
		                        		
		                        	
		                				5.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis 
		                			
		                			Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
		                        		
		                        			
		                        			 Five saponins were isolated from the kernels of 
		                        		
		                        	
6.Changes in the body shape and ergonomic compatibility for functional dimensions of desks and chairs for students in Harbin during 2010-2024
Chinese Journal of School Health 2025;46(3):315-320
		                        		
		                        			Objective:
		                        			To analyze the change trends in the body shape indicators and proportions of students in Harbin from 2010 to 2024, and to investigate ergonomic compatibility of functional dimensions of school desks and chairs with current student shape indicators, so as to provide a reference for revising furniture standards of desks and chairs.
		                        		
		                        			Methods:
		                        			Between September and November of both 2010 and 2024, a combination of convenience sampling and stratified cluster random sampling was conducted across three districts in Harbin, yielding samples of 6 590 and 6 252 students, respectively. Anthropometric shape indicators cluding height, sitting height, crus length, and thigh length-and their proportional changes were compared over the 15-year period. The 2024 data were compared with current standard functional dimensions of school furniture. The statistical analysis incorporated  t-test and Mann-Whitney  U- test.
		                        		
		                        			Results:
		                        			From 2010 to 2024, average height increased by 1.8 cm for boys and 1.5 cm for girls; sitting height increased by 1.5 cm for both genders; crus length increased by 0.3 cm for boys and 0.4 cm for girls; and thigh length increased by 0.5 cm for both genders. The ratios of sitting height to height, and sitting height to leg length increased by less than  0.1 . The difference between desk chair height and 1/3 sitting height ranged from 0.4-0.8 cm. Among students matched with size 0 desks and chairs, 22.0% had a desk to chair height difference less than 0, indicating that the desk to chair height difference might be insufficient for taller students. The differences between seat height and fibular height ranged from -1.4 to 1.1 cm; and the differences between seat depth and buttock popliteal length ranged from -9.8 to 3.4 cm. Among obese students, the differences between seat width and 1/2 hip circumference ranged from -20.5 to -8.7 cm, while it ranged from -12.2 to -3.8 cm among non obese students.
		                        		
		                        			Conclusion
		                        			Current furniture standards basically satisfy hygienic requirements; however, in the case of exceptionally tall and obese students, ergonomic accommodations such as adaptive seating allocation or personalized adjustments are recommended to meet hygienic requirements.
		                        		
		                        		
		                        		
		                        	
7.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
		                        		
		                        			 Purpose:
		                        			The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs). 
		                        		
		                        			Materials and Methods:
		                        			Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients. 
		                        		
		                        			Results:
		                        			A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804. 
		                        		
		                        			Conclusion
		                        			USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients. 
		                        		
		                        		
		                        		
		                        	
8.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
		                        		
		                        			 Purpose:
		                        			The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs). 
		                        		
		                        			Materials and Methods:
		                        			Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients. 
		                        		
		                        			Results:
		                        			A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804. 
		                        		
		                        			Conclusion
		                        			USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients. 
		                        		
		                        		
		                        		
		                        	
9.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
		                        		
		                        			 Purpose:
		                        			The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs). 
		                        		
		                        			Materials and Methods:
		                        			Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients. 
		                        		
		                        			Results:
		                        			A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804. 
		                        		
		                        			Conclusion
		                        			USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients. 
		                        		
		                        		
		                        		
		                        	
10.Expert consensus on the positioning of the "Three-in-One" Registration and Evaluation Evidence System and the value of orientation of the "personal experience"
Qi WANG ; Yongyan WANG ; Wei XIAO ; Jinzhou TIAN ; Shilin CHEN ; Liguo ZHU ; Guangrong SUN ; Daning ZHANG ; Daihan ZHOU ; Guoqiang MEI ; Baofan SHEN ; Qingguo WANG ; Xixing WANG ; Zheng NAN ; Mingxiang HAN ; Yue GAO ; Xiaohe XIAO ; Xiaobo SUN ; Kaiwen HU ; Liqun JIA ; Li FENG ; Chengyu WU ; Xia DING
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):445-450
		                        		
		                        			
		                        			Traditional Chinese Medicine (TCM), as a treasure of the Chinese nation, plays a significant role in maintaining public health. In 2019, the Central Committee of the Communist Party of China and the State Council proposed for the first time the establishment of a TCM registration and evaluation evidence system that integrates TCM theory, "personal experience" and clinical trials (referred to as the "Three-in-One" System) to promote the inheritance and innovation of TCM. Subsequently, the National Medical Products Administration issued several guiding principles to advance the improvement and implementation of this system. Owing to the complexity of its implementation, there are still differing understandings within the TCM industry regarding the positioning of the "Three-in-One" Registration and Evaluation Evidence System, as well as the connotation and value orientation of the "personal experience." To address this, Academician WANG Qi, President of the TCM Association, China International Exchange and Promotion Association for Medical and Healthcare and TCM master, led a group of academicians, TCM masters, TCM pharmacology experts and clinical TCM experts to convene a "Seminar on Promoting the Implementation of the ′Three-in-One′ Registration and Evaluation Evidence System for Chinese Medicinals." Through extensive discussions, an expert consensus was formed, clarifying the different roles of the TCM theory, "personal experience" and clinical trials within the system. It was further emphasized that the "personal experience" is the core of this system, and its data should be derived from clinical practice scenarios. In the future, the improvement of this system will require collaborative efforts across multiple fields to promote the high-quality development of the Chinese medicinal industry.
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail