1.Critical role of mitochondrial dynamics in chronic respiratory diseases and new therapeutic directions.
Xiaomei WANG ; Ziming ZHU ; Haocheng JIA ; Xueyi LU ; Yingze ZHANG ; Yingxin ZHU ; Jinzheng WANG ; Yanfang WANG ; Rubin TAN ; Jinxiang YUAN
Chinese Medical Journal 2025;138(15):1783-1793
Chronic obstructive pulmonary disease (COPD) and pulmonary hypertension (PH) are both chronic progressive respiratory diseases that cannot be completely cured. COPD is characterized by irreversible airflow limitation, chronic airway inflammation, and gradual decline in lung function, whereas PH is characterized by pulmonary vasoconstriction, remodeling, and infiltration of inflammatory cells. These diseases have similar pathological features, such as vascular hyperplasia, arteriolar contraction, and inflammatory infiltration. Despite these well-documented observations, the exact mechanisms underlying the occurrence and development of COPD and PH remain unclear. Evidence that mitochondrial dynamics imbalance is one major factor in the development of COPD and PH. Mitochondrial dynamics is precisely regulated by mitochondrial fusion proteins and fission proteins. When mitochondrial dynamics equilibrium is disrupted, it causes mitochondrial and even cell morphological dysfunction. Mitochondrial dynamics participates in various pathological processes for heart and lung disease. Mitochondrial dynamics may be different in the early and late stages of COPD and PH. In the early stages of the disease, mitochondrial fusion increases, inhibiting fission, and thereby compensatorily increasing adenosine triphosphate (ATP) production. With the development of the disease, mitochondria decompensation causes excessive fission. Mitochondrial dynamics is involved in the development of COPD and PH in a spatiotemporal manner. Based on this understanding, treatment strategies for mitochondrial dynamics abnormalities may be different at different stages of COPD and PH disease. This article will provide new ideas for the potential treatment of related diseases.
Humans
;
Mitochondrial Dynamics/physiology*
;
Pulmonary Disease, Chronic Obstructive/metabolism*
;
Hypertension, Pulmonary/metabolism*
;
Mitochondria/metabolism*
;
Animals
2.Mechanism of total flavone of Abelmoschus manihot in treating ulcerative colitis and depression via intestinal flora-glycerophospholipid metabolism- macrophage polarization pathway.
Chang-Ye LU ; Xiao-Min YUAN ; Lin-Hai HE ; Jia-Rong MAO ; Yu-Gen CHEN
China Journal of Chinese Materia Medica 2025;50(5):1286-1297
This study delves into the mechanism of total flavone of Abelmoschus manihot(TFA) in treating ulcerative colitis(UC) and depression via inhibiting M1 polarization of macrophages and reshaping intestinal flora and glycerolphospholipid metabolism. The study established a mouse model of UC and depression induced by chronic restraint stress(CRS) and dextran sulfate sodium(DSS). The fecal microbiota transplantation(FMT) experiment after TFA intervention was conducted. Mice in the FMT donor group were modeled and treated, and fecal samples were taken to prepare the bacterial solution. Mice in the FMT receptor group were treated with antibiotic intervention, and then administered bacterial solution by gavage from mice in the donor group, followed by UC depression modeling. After the experiment, behavioral tests were conducted to evaluate depressive-like behaviors by measuring the levels of 5-hydroxytryptamine(5-HT) and brain-derived neurotrophic factor(BDNF) in the hippocampus of mice. The levels of tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),and interleukin-1β(IL-1β)in the brain and colon tissue of mice were also measured, and the polarization status of macrophages was evaluated by measuring the mRNA levels of CD86 and CD206. 16S ribosomal RNA(16S rRNA) sequencing technology was used to analyze changes in the intestinal flora of mice. Wide target lipidomics was used to detect serum lipid metabolite levels in mice after FMT,and correlation analysis was conducted between lipids and differential intestinal flora significantly regulated by TFA. In vitro experiments, representative glycerophospholipid metabolites and glycerophospholipid inhibitors were used to intervene in Raw264.7 macrophages, and the mRNA levels of TNF-α,IL-6,IL-1β,CD86,and CD206 were detected. The results showed that TFA and FMT after intervention could significantly improve depressive-like behavior and intestinal inflammation in mice with UC and depression, significantly downregulate pro-inflammatory cytokines and CD86 mRNA expression in brain and colon tissue, inhibiting M1 polarization of macrophages, and significantly upregulate CD206 mRNA expression, promoting M2 polarization of macrophages. In addition, the high-dose group had a more significant effect. After TFA intervention, FMT significantly corrected the metabolic disorder of glycerophospholipids in mice with UC and depression, and there was a significant correlation between differential intestinal flora and glycerophospholipids. In vitro experiments showed that glycerophospholipid metabolites, especially lysophosphatidylcholine(LPC),significantly upregulated pro-inflammatory cytokines and CD86 mRNA expression, promote M1 polarization of macrophages, while glycerophospholipid inhibitors had the opposite effect. The results indicate that TFA effectively treats depression and UC by correcting intestinal flora dysbiosis and reshaping glycerophospholipid metabolism, thereby inhibiting M1 polarization of macrophages.
Animals
;
Mice
;
Gastrointestinal Microbiome/drug effects*
;
Abelmoschus/chemistry*
;
Macrophages/metabolism*
;
Colitis, Ulcerative/immunology*
;
Flavones/administration & dosage*
;
Male
;
Depression/genetics*
;
Glycerophospholipids/metabolism*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
3.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
4.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
5.Cognitive function disparities among atrial fibrillation patients with varying comorbidities.
Mei-Qi ZHAO ; Ting SHEN ; Man-Lin ZHAO ; Jia-Xin LIU ; Mei-Lin XU ; Xin LI ; Liu HE ; Yu KONG ; Chang-Sheng MA
Journal of Geriatric Cardiology 2025;22(10):859-870
BACKGROUND:
Mild cognitive impairment (MCI) is common in atrial fibrillation (AF) patients and may develop earlier in those with multiple cardiovascular comorbidities, potentially impairing self-management and treatment adherence. This study aimed to characterize the prevalence and profile of MCI in AF patients, examine its associations with cardiovascular comorbidities, and assess how these comorbidities influence specific cognitive domains.
METHODS:
This cross-sectional study analyzed data from AF patients who underwent cognitive assessment between 2017 and 2021. Cognitive status was categorized as MCI or non-MCI based on the Montreal Cognitive Assessment. Associations between comorbidities and MCI were assessed by logistic regression, and cognitive domains were compared using the Mann-Whitney U test.
RESULTS:
Of 4136 AF patients (mean age: 64.7 ± 9.4 years, 64.7% male), 33.5% of patients had MCI. Among the AF patients, 31.2% of patients had coronary artery disease, 20.1% of patients had heart failure, and 18.1% of patients had hypertension. 88.7% of patients had left atrial enlargement, and 11.0% of patients had reduced left ventricular ejection fraction. Independent factors associated with higher MCI prevalence included older age (OR = 1.04, 95% CI: 1.03-1.05, P < 0.001), lower education level (OR = 1.51, 95% CI: 1.31-1.73, P < 0.001), hypertension (OR = 1.28, 95% CI: 1.07-1.52, P = 0.001), heart failure (OR = 1.24, 95% CI: 1.04-1.48, P = 0.020), and lower left ventricular ejection fraction (OR = 1.43, 95% CI: 1.04-1.98, P = 0.028). A higher CHA2DS2-VASc score (OR = 1.27, 95% CI: 1.22-1.33, P < 0.001; ≥ 2 points vs. < 2 points), and greater atherosclerotic cardiovascular disease burden (OR = 1.45, 95% CI: 1.02-2.08, P = 0.040; 2 types vs. 0 type) were linked to increased MCI risk. These above factors influenced various cognitive domains.
CONCLUSIONS
MCI is common in AF and closely associated with cardiovascular multimorbidity. Patients with multiple comorbidities are at higher risk, highlighting the importance of routine cognitive assessment to support self-management and integrated care.
6.Research Progress of Chinese Medicine Monomers in Treatment of Cholangiocarcinoma.
Xiang WANG ; Xiao-Qing WANG ; Kai LUO ; He BAI ; Jia-Lin QI ; Gui-Xin ZHANG
Chinese journal of integrative medicine 2025;31(2):170-182
Cholangiocarcinoma (CCA) is a malignant tumor originating from cholangiocytes. However, it remains unclear about the pathogenesis of this carcinoma, which may be related to multiple factors. Currently, CCA is mainly treated by surgery, chemotherapy, and radiotherapy. Among them, surgery is the only potentially curative option for CCA. Nevertheless, the high malignancy and asymptomatic nature of CCA may lead to poor treatment outcomes. It has been demonstrated that Chinese medicine (CM) plays a significant role in various antitumor applications. Meanwhile, CM exhibits fewer side effects and high availability. Moreover, the in vitro application of CM monomers has been explored in many domestic and foreign studies. This article mainly reviews the signaling pathways and molecular mechanisms of CM monomers in the treatment of CCA in recent years. These findings are expected to provide new insights into the treatment of CCA.
Cholangiocarcinoma/drug therapy*
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Bile Duct Neoplasms/drug therapy*
;
Medicine, Chinese Traditional
;
Animals
;
Signal Transduction/drug effects*
7.Effect of SENP-1/HIF-1α pathway on vascular endothelial injury in rats with chronic intermittent hypoxia
Yuanhang JIA ; Yixia JIANG ; Zhenhua HE ; Lin CHEN ; Fang ZHOU
Journal of Jilin University(Medicine Edition) 2024;50(4):1026-1034
Objective:To discuss the effect of the small ubiquitin-like modifier-specific protease 1(SENP-1)/hypoxia-inducible factor 1α(HIF-1α)pathway on chronic intermittent hypoxia(CIH)-induced vascular endothelial injury in the rats,and to clarify the related mechanism.Methods:The SD rats were randomly divided into control group and CIH group,and then the rats in each group were further divided into 2,4,and 6-week subgroups,and there were 8 rats in each subgroup.The rats in CIH group were exposed to CIH in a CIH chamber to induce CIH and create the obstructive sleep apnea hypopnea syndrome(OSAHS)models,while the rats in control group were exposed to normoxic conditions.The serum and thoracic aorta tissue of the rats in various groups were collected at each time point.HE staining was used to observe the thoracic aorta vascular injury of the rats in various groups;ELISA method was used to detect the levels of nitric oxide(NO),endothelin-1(ET-1),von Willebrand factor(vWF),and thrombomodulin(TM)in serum of the rats in various groups;Western blotting method was used to detect the expression levels of SENP-1,HIF-1α,and vascular endothelial growth factor A(VEGFA)proteins in thoracic aorta tissue of the rats in various groups.In vitro,the aortic endothelial cells(rAECs)of the rats were cultured and infected with SENP-1 shRNA adenovirus(sh-SENP-1)to construct the cell line with low expression of SENP-1.The CIH was used to induce the vascular endothelial cell injury,and the cells were divided into CIH group,CIH+sh-NC group,and CIH+sh-SENP-1 group;control group was set up separately.CCK-8 method was used to detect the proliferation activities of the cells in various groups;ELISA method was used to detect the activities of lactate dehydrogenase(LDH)in the supernatant and the levels of NO,ET-1,malondialdehyde(MDA),and activities of superoxide dismutase(SOD)in the cells in various groups;flow cytometry was used to detect the apoptotic rates of the cells in various groups;Western blotting method was used to detect the expression levels of SENP-1,HIF-1α,and VEGFA proteins in the cells in various groups.Results:With the extension of CIH induction time,compared with control group,the thoracic aorta endothelium in CIH group gradually became rough and significantly thickened,the level of serum NO of the rats in CIH group was decreased(P<0.05),and the levels of serum ET-1,vWF,and TM,and the expression levels of SENP-1,HIF-1α,and VEGFA proteins in thoracic aorta tissue were increased(P<0.05).Compared with control group,the proliferation activity of the cells in CIH group was decreased(P<0.05),the LDH activity in the supernatant,the levels of ET-1,MDA,and the apoptotic rate in the cells were increased(P<0.05),while the levels of NO and activity of SOD in the cells were decreased(P<0.05),and the expression levels of SENP-1,HIF-1α,and VEGFA proteins in the cells were increased(P<0.05).Compared with CIH group,the proliferation activity of cells in CIH+sh-SENP-1 group was increased(P<0.05),the activity of LDH in the supernatant,the levels of ET-1,MDA,and the apoptotic rate of the cells were decreased(P<0.05),while the level of NO and activity of SOD in the cells were increased(P<0.05),and the expression levels of SENP-1,HIF-1α,and VEGFA proteins were decreased(P<0.05).Conclusion:The SENP-1/HIF-1α pathway is highly activated in the thoracic aorta injury tissue of the rats induced by CIH.Silencing SENP-1 expression can reduce CIH-induced vascular endothelial cell injury,and its mechanism may be related to downregulating the activation level of SENP-1/HIF-1α pathway.
8.Determination of Organophosphate Esters and Metabolites in Serum and Urine by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry
Wen-Qi WU ; Xiao-Xia WANG ; Wen-Bin LIU ; Li-Rong GAO ; Yang YU ; Tian-Qi JIA ; Zhe-Yuan SHI ; Yun-Chen HE ; Jing-Lin DENG ; Chun-Ci CHEN
Chinese Journal of Analytical Chemistry 2024;52(9):1346-1354,中插29-中插35
A new method was developed for simultaneous detection of total 19 kinds of organophosphate esters(OPEs)and their diester metabolites(di-OPEs)in human serum(1.0 mL)and urine(1.5 mL)with low volume of samples.The target compounds were determined using ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)after acetonitrile liquid-liquid extraction combined with purification using an ENVI-18 solid-phase extraction(SPE)column.OPEs and di-OPEs were separated using a Shim-pack GIST C18 column(100 mm×2.1 mm,2 μm)with a Shim-pack GIST-HP(G)C18 guard column.An electrospray ionization source(ESI)was employed in mass spectrometry analysis,with positive/negative ion mode using the multiple reaction monitoring(MRM).All target compounds were separated within 15 min,and exhibited good linear relationships in the concentration range of 2-100 ng/mL,with correlation coefficients(R2)above 0.994.The method detection limits(MDL)in serum ranged from 0.001 to 0.178 ng/mL and the MDL in urine ranged from 0.001 to 0.119 ng/mL.The recoveries of the analytes spiked in serum and urine matrices at two concentration levels were 30.5%-126.8%,with the relative standard deviations(RSDs)ranged from 1%to 23%.In addition,paired serum and urine samples from 11 patients were analyzed.For all samples tested,the internal standards of OPEs exhibited recoveries between 61%and 114%,whereas the internal standards for di-OPEs had recoveries ranging from 43%to 103%.OPEs and di-OPEs exhibited high detection frequencies in 22 serum and urine samples.Triethyl phosphate(TEP),tributyl phosphate(TBP),tris(2-ethylhexyl)phosphate(TEHP),tris(2-butoxyethyl)phosphate(TBEP),tris(1-chloro-2-propyl)phosphate(TCIPP),triphenyl phosphate(TPHP),tri-m-tolyl-phosphate(TMTP)and 2-ethylhexyl diphenyl phosphate(EHDPP)were universally detected in all serum samples.TCIPP was identified at the highest concentrations(median 0.548 ng/mL)in serum samples.In urine samples,the detection frequency for 12 kinds of target compounds reached 100%.Notably,TBP emerged as the predominant OPE in urine,demonstrating a median concentration of 0.506 ng/mL.Regarding di-OPEs,bis(2-chloroethyl)phosphate(BCEP)and bis(2-butoxyethyl)hydrogen phosphate(BBOEP)were the most abundant in urine,with median concentrations of 6.404 and 2.136 ng/mL,respectively.The total concentrations of OPEs and di-OPEs in serum and urine were 1.580-3.843 ng/mL and 5.149-17.537 ng/mL,respectively.These results not only confirmed the effectiveness of the method in detection of OPEs and di-OPEs in biological matrices,but also revealed the widespread presence of OPE compounds in human body and pointed to potential exposure risks.
9.Analysis of the types and functions of CD34 + cells in full-thickness skin defect wounds of normal mice and diabetic mice by single-cell RNA sequencing
Jia HE ; Jingru WANG ; Wenjun GAN ; Guiqiang LI ; Qi XIN ; Zepeng LIN ; Shubin RUAN ; Xiaodong CHEN
Chinese Journal of Burns 2024;40(3):230-239
Objective:To analyze the types and functions of CD34 + cells in full-thickness skin defect wounds of normal mice and diabetic mice by single-cell RNA sequencing. Methods:This study was an experimental study. The CD34 + cell lineage tracing mouse was produced, and the visualization of CD34 + cells under the fluorescent condition was realized. Six male CD34 + cell lineage tracing mice aged 7-8 weeks (designated as diabetic group) were intraperitoneally injected with streptozotocin to establish a diabetic model, and full-thickness skin defect wounds were prepared on their backs when they reached 13 weeks old. Another 6 male CD34 + cell lineage tracing mice aged 13 weeks (designated as control group) were also subjected to full-thickness skin defect wounds on their backs. On post-injury day (PID) 4, wound tissue was collected from 3 mice in control group and 2 mice in diabetic group, and digested to prepare single-cell suspensions. CD34 + cells were screened using fluorescence-activated cell sorting, followed by single-cell RNA sequencing. The Seurat 4.0.2 program in the R programming language was utilized for dimensionality reduction, visualization, and cell clustering analysis of CD34 + cell types, and to screen and annotate the marker genes for each CD34 + cell subpopulation. Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) enrichment analysis was performed to analyze the differentially expressed genes (DEGs) of CD34 + fibroblasts (Fbs), smooth muscle cells (SMCs), keratinocytes (KCs), and chondrocyte-like cells (CLCs) in the wound tissue of two groups of mice for exploring cellular functions. Results:On PID 4, CD34 + cells in the wound tissue of both groups of mice were consisted of 7 cell types, specifically endothelial cells, Fbs, KCs, macrophages, T cells, SMCs, and CLCs. Among these, Fbs were further classified into 5 subpopulations. Compared with those in control group, the proportions of CD34 + endothelial cells, Fbs subpopulation 1, Fbs subpopulation 4, KCs, and CLCs in the wound tissue of mice were increased in diabetic group, while the proportions of CD34 + Fbs subpopulation 2, Fbs subpopulation 3, and SMCs were decreased. The marker genes for annotating CD34 + CLCs, endothelial cells, Fbs subpopulation 1, Fbs subpopulation 2, Fbs subpopulation 3, Fbs subpopulation 4, Fbs subpopulation 5, KCs, macrophages, SMCs, and T cells were respectively metastasis-associated lung adenocarcinoma transcript 1, fatty acid binding protein 4, Gremlin 1, complement component 4B, H19 imprinted maternally expressed transcript, Dickkopf Wnt signaling pathway inhibitor 2, fibromodulin, keratin 5, CD74 molecule, regulator of G protein signaling 5, and inducible T-cell co-stimulator molecule. KEGG and GO enrichment analysis revealed that, compared with those in control group, DEGs with significant differential expression (SDE) in CD34 + Fbs from the wound tissue of mice in diabetic group on PID 4 were significantly enriched in terms related to inflammatory response, extracellular matrix (ECM) organization, regulation of cell proliferation, and aging (with Pvalues all <0.05), DEGs with SDE in CD34 + SMCs were significantly enriched in terms related to cell migration, apoptotic process, positive regulation of transcription, and phagosome (with P values all <0.05), DEGs with SDE in CD34 + KCs were significantly enriched in terms related to mitochondrial function, transcription, and neurodegenerative diseases (with P values all <0.05), and DEGs with SDE in CD34 + CLCs were significantly enriched in terms related to rhythm regulation, ECM, and viral infection (with P values all <0.05). Conclusions:CD34 + cells display high heterogeneity in the healing process of full-thickness skin defect wounds in both normal mice and diabetic mice. The significantly enriched functions of DEGs with SDE in CD34 + cell subpopulations in the wound tissue of the two mouse groups are closely related to the wound healing process.
10.Effect of chelerythrine on migration,invasion,and epithelial-mesenchymal transition of human ovarian cancer SKOV3 cells
Jia ZHOU ; Zhidong QIU ; Zhe LIN ; Guangfu LYU ; Jiaming XU ; He LIN ; Kexin WANG ; Yuchen WANG ; Xiaowei HUANG
Journal of Jilin University(Medicine Edition) 2024;50(1):25-32
Objective:To discuss the inhibitory effect of chelerythrine(CHE)on the migration,invasion,and epithelial-mesenchymal transition(EMT)of the human ovarian cancer SKOV3 cells,and to clarify the associated mechanism.Methods:The SKOV3 cells were cultured in vitro and divided into control group and 2.5,5.0,10.0,20.0,and 40.0 μmol·L-1 CHE groups.Methylthiazolydiphenyl-tetrazolium(MTT)assay was used to detect the inhibitory rates of proliferation of the cells in various groups.The SKOV3 cells were cultured in vitro and divided into control group,transforming growth factor-β1(TGF-β1)group,TGF-β1+5 μmol·L-1 CHE group,and TGF-β1+10 μmol·L-1 CHE group.Cell scratch assay was used to detect the migration rates of the cells in various groups;Transwell chamber assay was used to detect the numbers of migration and invasion cells in various groups;Western blotting method was used to detect the expression levels of E-cadherin,N-cadherin,and Vimentin proteins in the cells in various groups;immunofluorescence staining method was used to detect the fluorescence intensities of E-cadherin and N-cadherin in the cells in various groups.Results:The MTT assay results showed that compared with control group,the inhibitory rates of proliferation of the cells in 5.0,10.0,20.0,and 40.0 μmol·L-1 CHE groups were significantly increased(P<0.05 or P<0.01).The cell scratch assay results showed that compared with control group,the migration rate of the cells in TGF-β1 group was increased(P<0.01);compared with TGF-β1 group,the migration rates of the cells in TGF-β1+5 μmol·L-1 CHE group and TGF-β1+10 μmol·L-1 CHE group were significantly decreased(P<0.01).The Transwell chamber assay results showed that compared with control group,the numbers of migration and invasion cells in TGF-β1 group were significantly increased(P<0.05);compared with TGF-β1 group,the numbers of migration and invasion cells in TGF-β1+5 μmo·l L-1 CHE group and TGF-β1+10 μmo·l L-1 CHE group were significantly decreased(P<0.01).The Western blotting results showed that compared with control group,the expression level of E-cadherin protein in the cells in TGF-β1 group was significantly decreased(P<0.01),while the expression levels of N-cadherin and Vimentin proteins were increased(P<0.05 or P<0.01);compared with TGF-β1 group,the expression levels of E-cadherin protein in the cells in TGF-β1+5 μmol·L-1 CHE group and TGF-β1+10 μmol·L-1 CHE group were significantly increased(P<0.01),and the expression levels of N-cadherin and Vimentin proteins were significantly decreased(P<0.01).The immunofluorescence staining results showed that compared with control group,the fluorescence intensity of E-cadherin in the cells in TGF-β1 group was decreased,and the fluorescence intensity of N-cadherin was increased;compared with TGF-β1 group,the fluorescence intensities of E-cadherin in the cells in TGF-β 1+5 μmol·L-1 CHE group and TGF-β1+10 μmol·L-1 CHE group were significantly increased,and the fluorescence intensities of N-cadherin were decreased.Conclusion:CHE can inhibit the proliferation,migration,invasion,and EMT of the human ovarian cancer SKOV3 cells.

Result Analysis
Print
Save
E-mail