1.Equivalence of SYN008 versus omalizumab in patients with refractory chronic spontaneous urticaria: A multicenter, randomized, double-blind, parallel-group, active-controlled phase III study.
Jingyi LI ; Yunsheng LIANG ; Wenli FENG ; Liehua DENG ; Hong FANG ; Chao JI ; Youkun LIN ; Furen ZHANG ; Rushan XIA ; Chunlei ZHANG ; Shuping GUO ; Mao LIN ; Yanling LI ; Shoumin ZHANG ; Xiaojing KANG ; Liuqing CHEN ; Zhiqiang SONG ; Xu YAO ; Chengxin LI ; Xiuping HAN ; Guoxiang GUO ; Qing GUO ; Xinsuo DUAN ; Jie LI ; Juan SU ; Shanshan LI ; Qing SUN ; Juan TAO ; Yangfeng DING ; Danqi DENG ; Fuqiu LI ; Haiyun SUO ; Shunquan WU ; Jingbo QIU ; Hongmei LUO ; Linfeng LI ; Ruoyu LI
Chinese Medical Journal 2025;138(16):2040-2042
2.Guidelines for the diagnosis and treatment of prurigo nodularis.
Li ZHANG ; Qingchun DIAO ; Xia DOU ; Hong FANG ; Songmei GENG ; Hao GUO ; Yaolong CHEN ; Chao JI ; Chengxin LI ; Linfeng LI ; Jie LI ; Jingyi LI ; Wei LI ; Zhiming LI ; Yunsheng LIANG ; Jianjun QIAO ; Zhiqiang SONG ; Qing SUN ; Juan TAO ; Fang WANG ; Zhiqiang XIE ; Jinhua XU ; Suling XU ; Hongwei YAN ; Xu YAO ; Jianzhong ZHANG ; Litao ZHANG ; Gang ZHU ; Fei HAO ; Xinghua GAO
Chinese Medical Journal 2025;138(22):2859-2861
3.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
4.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
5.Nonsurgical Treatment of Chronic Subdural Hematoma Patients with Chinese Medicine: Case Report Series.
Kang-Ning LI ; Wei-Ming LIU ; Ying-Zhi HOU ; Run-Fa TIAN ; Shuo ZHANG ; Liang WU ; Long XU ; Jia-Ji QIU ; Yan-Ping TONG ; Tao YANG ; Yong-Ping FAN
Chinese journal of integrative medicine 2025;31(10):937-941
6.A novel anti-ischemic stroke candidate drug AAPB with dual effects of neuroprotection and cerebral blood flow improvement.
Jianbing WU ; Duorui JI ; Weijie JIAO ; Jian JIA ; Jiayi ZHU ; Taijun HANG ; Xijing CHEN ; Yang DING ; Yuwen XU ; Xinglong CHANG ; Liang LI ; Qiu LIU ; Yumei CAO ; Yan ZHONG ; Xia SUN ; Qingming GUO ; Tuanjie WANG ; Zhenzhong WANG ; Ya LING ; Wei XIAO ; Zhangjian HUANG ; Yihua ZHANG
Acta Pharmaceutica Sinica B 2025;15(2):1070-1083
Ischemic stroke (IS) is a globally life-threatening disease. Presently, few therapeutic medicines are available for treating IS, and rt-PA is the only drug approved by the US Food and Drug Administration (FDA) in the US. In fact, many agents showing excellent neuroprotection but no blood flow-improving activity in animals have not achieved ideal clinical efficacy, while thrombolytic drugs only improving blood flow without neuroprotection have limited their wider application. To address these challenges and meet the huge unmet clinical need, we have designed and identified a novel compound AAPB with dual effects of neuroprotection and cerebral blood flow improvement. AAPB significantly reduced cerebral infarction and neural function deficit in tMCAO rats, pMCAO rats, and IS rhesus monkeys, as well as displayed exceptional safety profiles and excellent pharmacokinetic properties in rats and dogs. AAPB has now entered phase I of clinical trials fighting IS in China.
7.Specific effect of inserted sham acupuncture and its impact on the estimation of acupuncture treatment effect in randomized controlled trials: A systematic survey.
Xiao-Chao LUO ; Jia-Li LIU ; Ming-Hong YAO ; Ye-Meng CHEN ; Arthur Yin FAN ; Fan-Rong LIANG ; Ji-Ping ZHAO ; Ling ZHAO ; Xu ZHOU ; Xiao-Ying ZHONG ; Jia-Hui YANG ; Bo LI ; Ying ZHANG ; Xin SUN ; Ling LI
Journal of Integrative Medicine 2025;23(6):630-640
BACKGROUND:
The use of inserted sham acupuncture as a placebo in randomized controlled trials (RCTs) is controversial, because it may produce specific effects that cause an underestimation of the effect of acupuncture treatment.
OBJECTIVE:
This systematic survey investigates the magnitude of insert-specific effects of sham acupuncture and whether they affect the estimation of acupuncture treatment effects.
SEARCH STRATEGY:
PubMed, Embase and Cochrane Central Register of Controlled Trials were searched to identify acupuncture RCTs from their inception until December 2022.
INCLUSION CRITERIA:
RCTs that evaluated the effects of acupuncture compared to sham acupuncture and no treatment.
DATA EXTRACTION AND ANALYSIS:
The total effect measured for an acupuncture treatment group in RCTs were divided into three components, including the natural history and/or regression to the mean effect (controlled for no-treatment group), the placebo effect, and the specific effect of acupuncture. The first two constituted the contextual effect of acupuncture, which is mimicked by a sham acupuncture treatment group. The proportion of acupuncture total effect size was considered to be 1. The proportion of natural history and/or regression to the mean effect (PNE) and proportional contextual effect (PCE) of included RCTs were pooled using meta-analyses with a random-effect model. The proportion of acupuncture placebo effect was the difference between PCE and PNE in RCTs with non-inserted sham acupuncture. The proportion of insert-specific effect of sham acupuncture (PIES) was obtained by subtracting the proportion of acupuncture placebo effect and PNE from PCE in RCTs with inserted sham acupuncture. The impact of PIES on the estimation of acupuncture's treatment effect was evaluated by quantifying the percentage of RCTs that the effect of outcome changed from no statistical difference to statistical difference after removing PIES in the included studies, and the impact of PIES was externally validated in other acupuncture RCTs with an inserted sham acupuncture group that were not used to calculate PIES.
RESULTS:
This analysis included 32 studies with 5492 patients. The overall PNE was 0.335 (95% confidence interval [CI], 0.255-0.415) and the PCE of acupuncture was 0.639 (95% CI, 0.567-0.710) of acupuncture's total effect. The proportional contribution of the placebo effect to acupuncture's total effect was 0.191, and the PIES was 0.189. When we modeled the exclusion of the insert-specific effect of sham acupuncture, the acupuncture treatment effect changed from no difference to a significant difference in 45.45% of the included RCTs, and in 40.91% of the external validated RCTs.
CONCLUSION
The insert-specific effect of sham acupuncture in RCTs represents 18.90% of acupuncture's total effect and significantly affects the evaluation of the acupuncture treatment effect. More than 40% of RCTs that used inserted sham acupuncture would draw different conclusions if the PIES had been controlled for. Considering the impact of the insert-specific effect of sham acupuncture, caution should be taken when using inserted sham acupuncture placebos in RCTs. Please cite this article as: Luo XC, Liu JL, Yao MH, Chen YM, Fan AY, Liang FR, Zhao JP, Zhao L, Zhou X, Zhong XY, Yang JH, Li B, Zhang Y, Sun X, Li L. Specific effect of inserted sham acupuncture and its impact on the estimation of acupuncture treatment effect in randomized controlled trials: A systematic survey. J Integr Med. 2025; 23(6):630-640.
Acupuncture Therapy/methods*
;
Humans
;
Randomized Controlled Trials as Topic
;
Placebo Effect
;
Placebos
;
Treatment Outcome
8.Transcutaneous Electrical Acupoint Stimulation Promotes PGC-1α Mediated Mitochondrial Biogenesis and Antioxidant Stress to Protect Cognitive Function in Vascular Dementia Rats
Ji-Liang KANG ; Ke HU ; Jun-Yue LU ; Zi-Wei HU ; Biao-Ping XU ; Xiao-Mao LI ; Jun-Jie ZHOU ; Yu JIN ; Min TANG ; Rong XU ; You-Liang WEN
Progress in Biochemistry and Biophysics 2024;51(5):1191-1202
ObjectiveThe purpose of this study was to investigate the effects of transcutaneous electrical acupoint stimulation (TEAS) on cognitive function of vascular dementia (VD) rats and its mechanism. MethodsVD rat model was established by modified two-vessel occlusion (2-VO). After modeling, TEAS and electroacupuncture (EA) were used to stimulate Baihui and Zusanli points of rats respectively for 14 d. After treatment, novel object recognition test, Morris water maze test, and Y maze test were used to evaluate the spatial memory and learning ability of rats. Hematoxylin and eosin staining was used to observe the morphology of hippocampal neurons. Transmission electron microscopy was used to observe the ultrastructure of hippocampal mitochondria. Enzyme-linked immunosorbent assay kits were used to detected the levels of SOD, CAT, GSH-Px, MDA and ROS in serum of rats. Western blot was used to detect the expression of PGC-1α, TFAM, HO-1, NQO1 proteins in the hippocampus, Keap1 protein in the cytoplasm and Nrf2, NRF1 proteins in the nucleus. ResultsAfter treatment for 14 d, compared to the model group, the escape latency of VD rats decreased, while the discrimination index, the times of rats crossing the original platform area, the residence time in the original platform quadrant, and the percentage of alternation increased. TEAS can improve the structure of hippocampal neurons and mitochondria of VD rats, showing that neurons were arranged more regularly and distributed more evenly, nuclear membrane and nucleoli were clearer, and mitochondrial swelling were reduced, mitochondrial matrix density were increased, and mitochondrial cristae were more obvious. The levels of SOD, GSH-Px and CAT in serum increased significantly, while the concentration of MDA and ROS decreased. TEAS also up-regulated the expression levels of PGC-1α TFAM, NQO1 and HO-1 proteins in the hippocampus and Nrf2, NRF1 proteins in the nucleus, but down-regulated the Keap1 protein in the cytoplasm. ConclusionTEAS can improve cognition, hippocampal neurons and mitochondrial structure of VD rats, and the effect is better than EA. The mechanism may be the activation of PGC-1α mediated mitochondrial biogenesis and antioxidant stress, which also provides a potential therapeutic technology and experimental basis for the treatment of VD.
9.A Case Report of Multidisciplinary Diagnosis and Treatment of a Patient with Tuberous Sclerosis Complex and Multi-Organ Involvement
Hua ZHENG ; Yunfei ZHI ; Lujing YING ; Lan ZHU ; Mingliang JI ; Ze LIANG ; Jiangshan WANG ; Haifeng SHI ; Weihong ZHANG ; Mengsu XIAO ; Yushi ZHANG ; Kaifeng XU ; Zhaohui LU ; Yaping LIU ; Ruiyi XU ; Huijuan ZHU ; Li WEN ; Yan ZHANG ; Gang CHEN ; Limeng CHEN
JOURNAL OF RARE DISEASES 2024;3(1):79-86
Tuberous sclerosis complex(TSC)is a rare genetic disease that can lead to benign dysplasia in multiple organs such as the skin, brain, eyes, oral cavity, heart, lungs, kidneys, liver, and bones. Its main symptoms include epilepsy, intellectual disabilities, skin depigmentation, and facial angiofibromas, whilst incidence is approximately 1 in 10 000 to 1 in 6000 newborns. This case presents a middle-aged woman who initially manifested with epilepsy and nodular depigmentation. Later, she developed a lower abdominal mass, elevated creatinine, and severe anemia. Based on clinical features and whole exome sequencing, the primary diagnosis was confirmed as TSC. Laboratory and imaging examinations revealed that the lower abdominal mass originated from the uterus. CT-guided biopsy pathology and surgical pathology suggested a combination of leiomyoma and abscess. With the involvement of multiple organs and various complications beyond the main diagnosis, the diagnostic and therapeutic process for this patient highlights the importance of rigorous clinical thinking and multidisciplinary collaboration in the diagnosis and treatment of rare and challenging diseases.
10.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.

Result Analysis
Print
Save
E-mail