1.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
		                        		
		                        			 Objective:
		                        			To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients. 
		                        		
		                        			Materials and Methods:
		                        			We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison. 
		                        		
		                        			Results:
		                        			The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994). 
		                        		
		                        			Conclusion
		                        			Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients. 
		                        		
		                        		
		                        		
		                        	
2.Implant–supported fixed prosthesis for orthognathic surgery in ectodermal dysplasia: a case report
Yeon-Ah SHIN ; Ji-Eun MOON ; Se-Ha KANG ; Chan-Ik PARK ; Yoon-Joo BAE ; Min-Seok OH ; Woo-Jin JEON ; Na-Ra KANG ; Min-Jung BAEK
The Journal of Korean Academy of Prosthodontics 2025;63(1):20-30
		                        		
		                        			
		                        			 Patients with ectodermal dysplasia often have atrophied alveolar bone and an inadequate maxillomandibular relationship owing to congenital edentulism.Accurate implant placement that can overcomes anatomical limitations and orthognathic surgery to improve the maxillomandibular relationship is necessary for creating implant-supported prosthesis for these patients. Implant placement and provisional prosthesis fabrication before orthognathic surgery can provide critical fixed reference points and ensure accuracy during orthognathic surgery.In our patient, a digital system was used to design a surgical guide that considered the predictable position of the definitive prosthesis, allowing the placement of implants to overcome anatomical limitations and the creation of fixed reference points via the delivery of a provisional prosthesis for effective orthognathic surgery. The lack of compensation during orthognathic surgery was considered in the definitive prosthesis. As a result, a prosthesis with a minimal anterior cantilever was fabricated. This study aimed to determine the appropriate sequence of multidisciplinary collaborations that would, result in the best functional and aesthetic outcomes. 
		                        		
		                        		
		                        		
		                        	
3.Long-Term Incidence of Gastrointestinal Bleeding Following Ischemic Stroke
Jun Yup KIM ; Beom Joon KIM ; Jihoon KANG ; Do Yeon KIM ; Moon-Ku HAN ; Seong-Eun KIM ; Heeyoung LEE ; Jong-Moo PARK ; Kyusik KANG ; Soo Joo LEE ; Jae Guk KIM ; Jae-Kwan CHA ; Dae-Hyun KIM ; Tai Hwan PARK ; Kyungbok LEE ; Hong-Kyun PARK ; Yong-Jin CHO ; Keun-Sik HONG ; Kang-Ho CHOI ; Joon-Tae KIM ; Dong-Eog KIM ; Jay Chol CHOI ; Mi-Sun OH ; Kyung-Ho YU ; Byung-Chul LEE ; Kwang-Yeol PARK ; Ji Sung LEE ; Sujung JANG ; Jae Eun CHAE ; Juneyoung LEE ; Min-Surk KYE ; Philip B. GORELICK ; Hee-Joon BAE ;
Journal of Stroke 2025;27(1):102-112
		                        		
		                        			 Background:
		                        			and Purpose Previous research on patients with acute ischemic stroke (AIS) has shown a 0.5% incidence of major gastrointestinal bleeding (GIB) requiring blood transfusion during hospitalization. The existing literature has insufficiently explored the long-term incidence in this population despite the decremental impact of GIB on stroke outcomes. 
		                        		
		                        			Methods:
		                        			We analyzed the data from a cohort of patients with AIS admitted to 14 hospitals as part of a nationwide multicenter prospective stroke registry between 2011 and 2013. These patients were followed up for up to 6 years. The occurrence of major GIB events, defined as GIB necessitating at least two units of blood transfusion, was tracked using the National Health Insurance Service claims data. 
		                        		
		                        			Results:
		                        			Among 10,818 patients with AIS (male, 59%; mean age, 68±13 years), 947 (8.8%) experienced 1,224 episodes of major GIB over a median follow-up duration of 3.1 years. Remarkably, 20% of 947 patients experienced multiple episodes of major GIB. The incidence peaked in the first month after AIS, reaching 19.2 per 100 person-years, and gradually decreased to approximately one-sixth of this rate by the 2nd year with subsequent stabilization. Multivariable analysis identified the following predictors of major GIB: anemia, estimated glomerular filtration rate <60 mL/min/1.73 m2 , and a 3-month modified Rankin Scale score of ≥4. 
		                        		
		                        			Conclusion
		                        			Patients with AIS are susceptible to major GIB, particularly in the first month after the onset of AIS, with the risk decreasing thereafter. Implementing preventive strategies may be important, especially for patients with anemia and impaired renal function at stroke onset and those with a disabling stroke. 
		                        		
		                        		
		                        		
		                        	
4.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
		                        		
		                        			 Background:
		                        			The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition. 
		                        		
		                        			Methods:
		                        			Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq. 
		                        		
		                        			Results:
		                        			Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species. 
		                        		
		                        			Conclusion
		                        			This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities. 
		                        		
		                        		
		                        		
		                        	
5.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
		                        		
		                        			 Objective:
		                        			To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients. 
		                        		
		                        			Materials and Methods:
		                        			We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison. 
		                        		
		                        			Results:
		                        			The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994). 
		                        		
		                        			Conclusion
		                        			Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients. 
		                        		
		                        		
		                        		
		                        	
6.Implant–supported fixed prosthesis for orthognathic surgery in ectodermal dysplasia: a case report
Yeon-Ah SHIN ; Ji-Eun MOON ; Se-Ha KANG ; Chan-Ik PARK ; Yoon-Joo BAE ; Min-Seok OH ; Woo-Jin JEON ; Na-Ra KANG ; Min-Jung BAEK
The Journal of Korean Academy of Prosthodontics 2025;63(1):20-30
		                        		
		                        			
		                        			 Patients with ectodermal dysplasia often have atrophied alveolar bone and an inadequate maxillomandibular relationship owing to congenital edentulism.Accurate implant placement that can overcomes anatomical limitations and orthognathic surgery to improve the maxillomandibular relationship is necessary for creating implant-supported prosthesis for these patients. Implant placement and provisional prosthesis fabrication before orthognathic surgery can provide critical fixed reference points and ensure accuracy during orthognathic surgery.In our patient, a digital system was used to design a surgical guide that considered the predictable position of the definitive prosthesis, allowing the placement of implants to overcome anatomical limitations and the creation of fixed reference points via the delivery of a provisional prosthesis for effective orthognathic surgery. The lack of compensation during orthognathic surgery was considered in the definitive prosthesis. As a result, a prosthesis with a minimal anterior cantilever was fabricated. This study aimed to determine the appropriate sequence of multidisciplinary collaborations that would, result in the best functional and aesthetic outcomes. 
		                        		
		                        		
		                        		
		                        	
7.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
		                        		
		                        			 Objective:
		                        			To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients. 
		                        		
		                        			Materials and Methods:
		                        			We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison. 
		                        		
		                        			Results:
		                        			The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994). 
		                        		
		                        			Conclusion
		                        			Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients. 
		                        		
		                        		
		                        		
		                        	
8.Implant–supported fixed prosthesis for orthognathic surgery in ectodermal dysplasia: a case report
Yeon-Ah SHIN ; Ji-Eun MOON ; Se-Ha KANG ; Chan-Ik PARK ; Yoon-Joo BAE ; Min-Seok OH ; Woo-Jin JEON ; Na-Ra KANG ; Min-Jung BAEK
The Journal of Korean Academy of Prosthodontics 2025;63(1):20-30
		                        		
		                        			
		                        			 Patients with ectodermal dysplasia often have atrophied alveolar bone and an inadequate maxillomandibular relationship owing to congenital edentulism.Accurate implant placement that can overcomes anatomical limitations and orthognathic surgery to improve the maxillomandibular relationship is necessary for creating implant-supported prosthesis for these patients. Implant placement and provisional prosthesis fabrication before orthognathic surgery can provide critical fixed reference points and ensure accuracy during orthognathic surgery.In our patient, a digital system was used to design a surgical guide that considered the predictable position of the definitive prosthesis, allowing the placement of implants to overcome anatomical limitations and the creation of fixed reference points via the delivery of a provisional prosthesis for effective orthognathic surgery. The lack of compensation during orthognathic surgery was considered in the definitive prosthesis. As a result, a prosthesis with a minimal anterior cantilever was fabricated. This study aimed to determine the appropriate sequence of multidisciplinary collaborations that would, result in the best functional and aesthetic outcomes. 
		                        		
		                        		
		                        		
		                        	
9.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
		                        		
		                        			 Background:
		                        			The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition. 
		                        		
		                        			Methods:
		                        			Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq. 
		                        		
		                        			Results:
		                        			Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species. 
		                        		
		                        			Conclusion
		                        			This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities. 
		                        		
		                        		
		                        		
		                        	
10.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
		                        		
		                        			 Background:
		                        			The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition. 
		                        		
		                        			Methods:
		                        			Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq. 
		                        		
		                        			Results:
		                        			Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species. 
		                        		
		                        			Conclusion
		                        			This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail