1.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
2.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
Background/Aims:
This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score.
Methods:
We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score.
Results:
A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites.
Conclusions
The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites.
3.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
4.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
5.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
Background/Aims:
This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score.
Methods:
We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score.
Results:
A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites.
Conclusions
The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites.
6.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
Background/Aims:
This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score.
Methods:
We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score.
Results:
A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites.
Conclusions
The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites.
7.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
8.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
Background/Aims:
This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score.
Methods:
We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score.
Results:
A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites.
Conclusions
The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites.
9.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
10.Effects of Three Kinds of Kombucha on the Surface of Composite Resin for Dental Restoration
Ye-Won SONG ; Sun-Young PARK ; Ye-Eun KIM ; Hye-Won LEE ; Jung-Yeon JAE ; Hyeon-Ji SHIM ; Hee-Jung LIM ; Im-Hee JUNG ; Do-Seon LIM
Journal of Dental Hygiene Science 2024;24(4):289-298
Background:
This study aimed to evaluate the effects of kombucha on the surface of composite resins and to examine thedegradation-inhibiting effect of adding calcium to kombucha.
Methods:
Six experimental groups were established, with three types of liquid kombucha: one with 3% added calcium,carbonated water as a positive control, and mineral water as a negative control. The pH and titratable acidity values of the experimental groups were measured. The samples were filled with condensed composite resin and placed in the experimental drinks for 5, 15, 30, and 60 minutes. The Vickers microhardness of the surface was measured before and after immersion, and the changes were compared.
Results:
The pH values of the experimental group were I’m alive (2.87±0.02), Hollys (2.95±0.01), Ediya (2.99±0.01), I’m alive +3% Ca (4.09±0.01), carbonated water (4.66±0.01), and mineral water (7.67±0.02). I’m alive (–12.35) showed the largest reduction in surface hardness, followed by Hollys (–9.78), carbonated water (–7.97), I’m alive +3% Ca (–7.82), Ediya (–7.60), and mineral water (–1.56). In the Vickers microhardness measurements, all experimental groups, except for the mineral water group, showed significant differences (p<0.05). The scanning electron microscope results showed that the experimental group and positive control had rough surfaces and micropores.
Conclusion
The surface hardness was significantly reduced in all experimental groups except for water. In particular, in the caseof kombucha with low pH, the reduction rate increased, weakening the physical properties of the material. In addition, the reduction rate of surface hardness was lower in kombucha with added calcium, and it is believed that drinking kombucha containing calcium can minimize the erosion of dental materials.

Result Analysis
Print
Save
E-mail