1.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
2.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
3.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
4.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
5.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
6.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
7.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
8.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
9.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
10.Inhibition of DNMT3B and PI3K/AKT/mTOR and ERK Pathways as a Novel Mechanism of Volasertib on Hypomethylating Agent-Resistant Cells
Eun-Ji CHOI ; Bon-Kwan KOO ; Eun-Hye HUR ; Ju Hyun MOON ; Ji Yun KIM ; Han-Seung PARK ; Yunsuk CHOI ; Kyoo-Hyung LEE ; Jung-Hee LEE ; Eun Kyung CHOI ; Je-Hwan LEE
Biomolecules & Therapeutics 2023;31(3):319-329
Resistance to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is a concerning problem. Polo-like kinase 1 (PLK1) is a key cell cycle modulator and is known to be associated with an activation of the PI3K pathway, which is related to the stabilization of DNA methyltransferase 1 (DNMT1), a target of HMAs. We investigated the effects of volasertib on HMA-resistant cell lines (MOLM/AZA-1 and MOLM/DEC-5) derived from MOLM-13, and bone marrow (BM) samples obtained from patients with MDS (BM blasts >5%) or AML evolved from MDS (MDS/AML). Volasertib effectively inhibited the proliferation of HMA-resistant cells with suppression of DNMTs and PI3K/AKT/mTOR and ERK pathways. Volasertib also showed significant inhibitory effects against primary BM cells from patients with MDS or MDS/AML, and the effects of volasertib inversely correlated with DNMT3B expression. The DNMT3B-overexpressed AML cells showed primary resistance to volasertib treatment. Our data suggest that volasertib has a potential role in overcoming HMA resistance in patients with MDS and MDS/ AML by suppressing the expression of DNMT3 enzymes and PI3K/AKT/mTOR and ERK pathways. We also found that DNMT3B overexpression might be associated with resistance to volasertib.

Result Analysis
Print
Save
E-mail