1.Long-Term Incidence of Gastrointestinal Bleeding Following Ischemic Stroke
Jun Yup KIM ; Beom Joon KIM ; Jihoon KANG ; Do Yeon KIM ; Moon-Ku HAN ; Seong-Eun KIM ; Heeyoung LEE ; Jong-Moo PARK ; Kyusik KANG ; Soo Joo LEE ; Jae Guk KIM ; Jae-Kwan CHA ; Dae-Hyun KIM ; Tai Hwan PARK ; Kyungbok LEE ; Hong-Kyun PARK ; Yong-Jin CHO ; Keun-Sik HONG ; Kang-Ho CHOI ; Joon-Tae KIM ; Dong-Eog KIM ; Jay Chol CHOI ; Mi-Sun OH ; Kyung-Ho YU ; Byung-Chul LEE ; Kwang-Yeol PARK ; Ji Sung LEE ; Sujung JANG ; Jae Eun CHAE ; Juneyoung LEE ; Min-Surk KYE ; Philip B. GORELICK ; Hee-Joon BAE ;
Journal of Stroke 2025;27(1):102-112
		                        		
		                        			 Background:
		                        			and Purpose Previous research on patients with acute ischemic stroke (AIS) has shown a 0.5% incidence of major gastrointestinal bleeding (GIB) requiring blood transfusion during hospitalization. The existing literature has insufficiently explored the long-term incidence in this population despite the decremental impact of GIB on stroke outcomes. 
		                        		
		                        			Methods:
		                        			We analyzed the data from a cohort of patients with AIS admitted to 14 hospitals as part of a nationwide multicenter prospective stroke registry between 2011 and 2013. These patients were followed up for up to 6 years. The occurrence of major GIB events, defined as GIB necessitating at least two units of blood transfusion, was tracked using the National Health Insurance Service claims data. 
		                        		
		                        			Results:
		                        			Among 10,818 patients with AIS (male, 59%; mean age, 68±13 years), 947 (8.8%) experienced 1,224 episodes of major GIB over a median follow-up duration of 3.1 years. Remarkably, 20% of 947 patients experienced multiple episodes of major GIB. The incidence peaked in the first month after AIS, reaching 19.2 per 100 person-years, and gradually decreased to approximately one-sixth of this rate by the 2nd year with subsequent stabilization. Multivariable analysis identified the following predictors of major GIB: anemia, estimated glomerular filtration rate <60 mL/min/1.73 m2 , and a 3-month modified Rankin Scale score of ≥4. 
		                        		
		                        			Conclusion
		                        			Patients with AIS are susceptible to major GIB, particularly in the first month after the onset of AIS, with the risk decreasing thereafter. Implementing preventive strategies may be important, especially for patients with anemia and impaired renal function at stroke onset and those with a disabling stroke. 
		                        		
		                        		
		                        		
		                        	
2.Comparison of combined intranasal dexmedetomidine and ketamine versus chloral hydrate for pediatric procedural sedation: a randomized controlled trial
Young-Eun JANG ; Eun-Young JOO ; Jung-Bin PARK ; Sang-Hwan JI ; Eun-Hee KIM ; Ji-Hyun LEE ; Hee-Soo KIM ; Jin-Tae KIM
Korean Journal of Anesthesiology 2025;78(3):248-260
		                        		
		                        			 Background:
		                        			We hypothesized that intranasal combination of dexmedetomidine (2 μg/kg) and ketamine (3 mg/kg) (IN DEXKET) improves the success rate of sedation in pediatric patients compared with chloral hydrate (CH; 50 mg/kg).  
		                        		
		                        			Methods:
		                        			This prospective, two-center, single-blinded, randomized controlled trial involved 136 pediatric patients (aged < 7 years) requiring procedural sedation. The participants were randomized to receive CH or IN DEXKET via a mucosal atomizer device. The primary outcome was the success rate of sedation (Pediatric Sedation State Scale, scores 1–3) within 15 min. The secondary outcomes included sedation failure at 30 min and overall complications of first-attempt sedation. 
		                        		
		                        			Results:
		                        			After excluding eight patients, 128 were included (CH = 66, IN DEXKET = 62). IN DEXKET showed a similar sedation success rate (75.8% [47/62] vs. 66.7% [44/66]; P = 0.330) but a lower complication rate (3.2% [2/62] vs. 16.7% [11/66]; P = 0.017) than CH. In the subgroup analysis for patients aged < 1 year, IN DEXKET showed a reduced complication rate than CH (2.6% [1/38] vs. 22.9% [8/35]; P = 0.012). In the subgroup analysis of children aged 1–7 years, IN DEXKET showed a higher sedation success rate within 15 min (79.2% [19/24] vs. 51.6% [16/31]; P = 0.049) and a lower sedation failure after 30 min (0% vs. 29.0% [9/31]; P = 0.003) than CH. 
		                        		
		                        			Conclusions
		                        			The intranasal combination of dexmedetomidine (2 μg/kg) and ketamine (3 mg/kg) is a safe and effective alternative to CH (50 mg/kg) for sedation in pediatric patients aged < 7 years. 
		                        		
		                        		
		                        		
		                        	
3.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
		                        		
		                        			 Background/Aims:
		                        			This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score. 
		                        		
		                        			Methods:
		                        			We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score. 
		                        		
		                        			Results:
		                        			A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites. 
		                        		
		                        			Conclusions
		                        			The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites. 
		                        		
		                        		
		                        		
		                        	
4.Comparison of combined intranasal dexmedetomidine and ketamine versus chloral hydrate for pediatric procedural sedation: a randomized controlled trial
Young-Eun JANG ; Eun-Young JOO ; Jung-Bin PARK ; Sang-Hwan JI ; Eun-Hee KIM ; Ji-Hyun LEE ; Hee-Soo KIM ; Jin-Tae KIM
Korean Journal of Anesthesiology 2025;78(3):248-260
		                        		
		                        			 Background:
		                        			We hypothesized that intranasal combination of dexmedetomidine (2 μg/kg) and ketamine (3 mg/kg) (IN DEXKET) improves the success rate of sedation in pediatric patients compared with chloral hydrate (CH; 50 mg/kg).  
		                        		
		                        			Methods:
		                        			This prospective, two-center, single-blinded, randomized controlled trial involved 136 pediatric patients (aged < 7 years) requiring procedural sedation. The participants were randomized to receive CH or IN DEXKET via a mucosal atomizer device. The primary outcome was the success rate of sedation (Pediatric Sedation State Scale, scores 1–3) within 15 min. The secondary outcomes included sedation failure at 30 min and overall complications of first-attempt sedation. 
		                        		
		                        			Results:
		                        			After excluding eight patients, 128 were included (CH = 66, IN DEXKET = 62). IN DEXKET showed a similar sedation success rate (75.8% [47/62] vs. 66.7% [44/66]; P = 0.330) but a lower complication rate (3.2% [2/62] vs. 16.7% [11/66]; P = 0.017) than CH. In the subgroup analysis for patients aged < 1 year, IN DEXKET showed a reduced complication rate than CH (2.6% [1/38] vs. 22.9% [8/35]; P = 0.012). In the subgroup analysis of children aged 1–7 years, IN DEXKET showed a higher sedation success rate within 15 min (79.2% [19/24] vs. 51.6% [16/31]; P = 0.049) and a lower sedation failure after 30 min (0% vs. 29.0% [9/31]; P = 0.003) than CH. 
		                        		
		                        			Conclusions
		                        			The intranasal combination of dexmedetomidine (2 μg/kg) and ketamine (3 mg/kg) is a safe and effective alternative to CH (50 mg/kg) for sedation in pediatric patients aged < 7 years. 
		                        		
		                        		
		                        		
		                        	
5.Regional analgesia techniques for pediatric surgery: challenges and innovations
Jung-Bin PARK ; Sang-Hwan JI ; Young-Eun JANG
Journal of the Korean Medical Association 2025;68(1):37-46
		                        		
		                        			
		                        			 Postoperative pain management is a critical component of perioperative care in pediatric patients. Adequate pain control not only improves patient comfort, but also mitigates adverse physiological responses such as tachycardia, hypertension, immunosuppression, and impaired wound healing. With the growing emphasis on opioid-sparing strategies due to concerns over opioid dependency and misuse, regional analgesia has emerged as a key element of multimodal analgesia protocols. Concerns regarding opioid dependence and misuse have positioned regional analgesia as an essential part of multimodal analgesia, helping to reduce opioid consumption and its associated side effects in pediatric patients.Current Concepts: Regional analgesia includes a range of techniques such as neuraxial, peripheral nerve, and fascial plane blocks. These methods have proven highly effective in reducing postoperative pain and the need for opioids in children. The advent of ultrasound-guided regional anesthesia has greatly improved the safety and accuracy of these techniques. Pediatric-specific anatomical and physiological factors, including immature descending pain modulation pathways and heightened sensitivity to local anesthetics, highlight the importance of customized approaches to regional anesthesia in this demographic.Discussion and Conclusion: Regional analgesia is a cornerstone of multimodal analgesia in pediatric patients, effectively reducing opioid consumption and promoting recovery. Despite challenges such as provider expertise and anatomical considerations, advancements in ultrasound-guided techniques have increased safety and improved precision. Future directions should focus on expanding education and training in pediatric regional anesthesia, as well as conducting high-quality studies to further refine best practices. 
		                        		
		                        		
		                        		
		                        	
6.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
		                        		
		                        			 Background/Aims:
		                        			This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score. 
		                        		
		                        			Methods:
		                        			We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score. 
		                        		
		                        			Results:
		                        			A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites. 
		                        		
		                        			Conclusions
		                        			The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites. 
		                        		
		                        		
		                        		
		                        	
7.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
		                        		
		                        			 Background/Aims:
		                        			This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score. 
		                        		
		                        			Methods:
		                        			We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score. 
		                        		
		                        			Results:
		                        			A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites. 
		                        		
		                        			Conclusions
		                        			The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites. 
		                        		
		                        		
		                        		
		                        	
8.Long-Term Incidence of Gastrointestinal Bleeding Following Ischemic Stroke
Jun Yup KIM ; Beom Joon KIM ; Jihoon KANG ; Do Yeon KIM ; Moon-Ku HAN ; Seong-Eun KIM ; Heeyoung LEE ; Jong-Moo PARK ; Kyusik KANG ; Soo Joo LEE ; Jae Guk KIM ; Jae-Kwan CHA ; Dae-Hyun KIM ; Tai Hwan PARK ; Kyungbok LEE ; Hong-Kyun PARK ; Yong-Jin CHO ; Keun-Sik HONG ; Kang-Ho CHOI ; Joon-Tae KIM ; Dong-Eog KIM ; Jay Chol CHOI ; Mi-Sun OH ; Kyung-Ho YU ; Byung-Chul LEE ; Kwang-Yeol PARK ; Ji Sung LEE ; Sujung JANG ; Jae Eun CHAE ; Juneyoung LEE ; Min-Surk KYE ; Philip B. GORELICK ; Hee-Joon BAE ;
Journal of Stroke 2025;27(1):102-112
		                        		
		                        			 Background:
		                        			and Purpose Previous research on patients with acute ischemic stroke (AIS) has shown a 0.5% incidence of major gastrointestinal bleeding (GIB) requiring blood transfusion during hospitalization. The existing literature has insufficiently explored the long-term incidence in this population despite the decremental impact of GIB on stroke outcomes. 
		                        		
		                        			Methods:
		                        			We analyzed the data from a cohort of patients with AIS admitted to 14 hospitals as part of a nationwide multicenter prospective stroke registry between 2011 and 2013. These patients were followed up for up to 6 years. The occurrence of major GIB events, defined as GIB necessitating at least two units of blood transfusion, was tracked using the National Health Insurance Service claims data. 
		                        		
		                        			Results:
		                        			Among 10,818 patients with AIS (male, 59%; mean age, 68±13 years), 947 (8.8%) experienced 1,224 episodes of major GIB over a median follow-up duration of 3.1 years. Remarkably, 20% of 947 patients experienced multiple episodes of major GIB. The incidence peaked in the first month after AIS, reaching 19.2 per 100 person-years, and gradually decreased to approximately one-sixth of this rate by the 2nd year with subsequent stabilization. Multivariable analysis identified the following predictors of major GIB: anemia, estimated glomerular filtration rate <60 mL/min/1.73 m2 , and a 3-month modified Rankin Scale score of ≥4. 
		                        		
		                        			Conclusion
		                        			Patients with AIS are susceptible to major GIB, particularly in the first month after the onset of AIS, with the risk decreasing thereafter. Implementing preventive strategies may be important, especially for patients with anemia and impaired renal function at stroke onset and those with a disabling stroke. 
		                        		
		                        		
		                        		
		                        	
9.Regional analgesia techniques for pediatric surgery: challenges and innovations
Jung-Bin PARK ; Sang-Hwan JI ; Young-Eun JANG
Journal of the Korean Medical Association 2025;68(1):37-46
		                        		
		                        			
		                        			 Postoperative pain management is a critical component of perioperative care in pediatric patients. Adequate pain control not only improves patient comfort, but also mitigates adverse physiological responses such as tachycardia, hypertension, immunosuppression, and impaired wound healing. With the growing emphasis on opioid-sparing strategies due to concerns over opioid dependency and misuse, regional analgesia has emerged as a key element of multimodal analgesia protocols. Concerns regarding opioid dependence and misuse have positioned regional analgesia as an essential part of multimodal analgesia, helping to reduce opioid consumption and its associated side effects in pediatric patients.Current Concepts: Regional analgesia includes a range of techniques such as neuraxial, peripheral nerve, and fascial plane blocks. These methods have proven highly effective in reducing postoperative pain and the need for opioids in children. The advent of ultrasound-guided regional anesthesia has greatly improved the safety and accuracy of these techniques. Pediatric-specific anatomical and physiological factors, including immature descending pain modulation pathways and heightened sensitivity to local anesthetics, highlight the importance of customized approaches to regional anesthesia in this demographic.Discussion and Conclusion: Regional analgesia is a cornerstone of multimodal analgesia in pediatric patients, effectively reducing opioid consumption and promoting recovery. Despite challenges such as provider expertise and anatomical considerations, advancements in ultrasound-guided techniques have increased safety and improved precision. Future directions should focus on expanding education and training in pediatric regional anesthesia, as well as conducting high-quality studies to further refine best practices. 
		                        		
		                        		
		                        		
		                        	
10.Comparison of combined intranasal dexmedetomidine and ketamine versus chloral hydrate for pediatric procedural sedation: a randomized controlled trial
Young-Eun JANG ; Eun-Young JOO ; Jung-Bin PARK ; Sang-Hwan JI ; Eun-Hee KIM ; Ji-Hyun LEE ; Hee-Soo KIM ; Jin-Tae KIM
Korean Journal of Anesthesiology 2025;78(3):248-260
		                        		
		                        			 Background:
		                        			We hypothesized that intranasal combination of dexmedetomidine (2 μg/kg) and ketamine (3 mg/kg) (IN DEXKET) improves the success rate of sedation in pediatric patients compared with chloral hydrate (CH; 50 mg/kg).  
		                        		
		                        			Methods:
		                        			This prospective, two-center, single-blinded, randomized controlled trial involved 136 pediatric patients (aged < 7 years) requiring procedural sedation. The participants were randomized to receive CH or IN DEXKET via a mucosal atomizer device. The primary outcome was the success rate of sedation (Pediatric Sedation State Scale, scores 1–3) within 15 min. The secondary outcomes included sedation failure at 30 min and overall complications of first-attempt sedation. 
		                        		
		                        			Results:
		                        			After excluding eight patients, 128 were included (CH = 66, IN DEXKET = 62). IN DEXKET showed a similar sedation success rate (75.8% [47/62] vs. 66.7% [44/66]; P = 0.330) but a lower complication rate (3.2% [2/62] vs. 16.7% [11/66]; P = 0.017) than CH. In the subgroup analysis for patients aged < 1 year, IN DEXKET showed a reduced complication rate than CH (2.6% [1/38] vs. 22.9% [8/35]; P = 0.012). In the subgroup analysis of children aged 1–7 years, IN DEXKET showed a higher sedation success rate within 15 min (79.2% [19/24] vs. 51.6% [16/31]; P = 0.049) and a lower sedation failure after 30 min (0% vs. 29.0% [9/31]; P = 0.003) than CH. 
		                        		
		                        			Conclusions
		                        			The intranasal combination of dexmedetomidine (2 μg/kg) and ketamine (3 mg/kg) is a safe and effective alternative to CH (50 mg/kg) for sedation in pediatric patients aged < 7 years. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail