1.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
2.Artificial Intelligence-Based Early Prediction of Acute Respiratory Failure in the Emergency Department Using Biosignal and Clinical Data
Changho HAN ; Yun Jung JUNG ; Ji Eun PARK ; Wou Young CHUNG ; Dukyong YOON
Yonsei Medical Journal 2025;66(2):121-130
Purpose:
Early identification of patients at risk for acute respiratory failure (ARF) could help clinicians devise preventive strategies. Analyzing biosignals with artificial intelligence (AI) can uncover hidden information and variability within time series. We aimed to develop and validate AI models to predict ARF within 72 h after emergency department admission, primarily using highresolution biosignals collected within 4 h of arrival.
Materials and Methods:
Our AI model, built on convolutional recurrent neural networks, combines biosignal feature extraction and sequence modeling. The model was developed and internally validated with data from 5284 admissions [1085 (20.5%) positive for ARF], and externally validated using data from 144 admissions [7 (4.9%) positive for ARF] from another institution. We defined ARF as the application of advanced respiratory support devices.
Results:
Our AI model performed well in predicting ARF, achieving area under the receiver operating characteristic curve (AUROC) of 0.840 and 0.743 in internal and external validations, respectively. It outperformed the Modified Early Warning Score (MEWS) and XGBoost models built only with clinical variables. High predictive ability for mortality was observed, with AUROC up to 0.809. A 10% increase in AI prediction scores was associated with 1.44-fold and 1.42-fold increases in ARF risk and mortality risk, respectively, even after adjusting for MEWS and demographic variables.
Conclusion
Our AI model demonstrates high predictive accuracy and significant associations with clinical outcomes. Our AI model has the potential to promptly aid in triage decisions. Our study shows that using AI to analyze biosignals advances disease detection and prediction.
3.Study Protocol of Expanded Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro-EXP)
Jae Hoon MOON ; Eun Kyung LEE ; Wonjae CHA ; Young Jun CHAI ; Sun Wook CHO ; June Young CHOI ; Sung Yong CHOI ; A Jung CHU ; Eun-Jae CHUNG ; Yul HWANGBO ; Woo-Jin JEONG ; Yuh-Seog JUNG ; Kyungsik KIM ; Min Joo KIM ; Su-jin KIM ; Woochul KIM ; Yoo Hyung KIM ; Chang Yoon LEE ; Ji Ye LEE ; Kyu Eun LEE ; Young Ki LEE ; Hunjong LIM ; Do Joon PARK ; Sue K. PARK ; Chang Hwan RYU ; Junsun RYU ; Jungirl SEOK ; Young Shin SONG ; Ka Hee YI ; Hyeong Won YU ; Eleanor WHITE ; Katerina MASTROCOSTAS ; Roderick J. CLIFTON-BLIGH ; Anthony GLOVER ; Matti L. GILD ; Ji-hoon KIM ; Young Joo PARK
Endocrinology and Metabolism 2025;40(2):236-246
Background:
Active surveillance (AS) has emerged as a viable management strategy for low-risk papillary thyroid microcarcinoma (PTMC), following pioneering trials at Kuma Hospital and the Cancer Institute Hospital in Japan. Numerous prospective cohort studies have since validated AS as a management option for low-risk PTMC, leading to its inclusion in thyroid cancer guidelines across various countries. From 2016 to 2020, the Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro) enrolled 1,177 patients, providing comprehensive data on PTMC progression, sonographic predictors of progression, quality of life, surgical outcomes, and cost-effectiveness when comparing AS to immediate surgery. The second phase of MAeSTro (MAeSTro-EXP) expands AS to low-risk papillary thyroid carcinoma (PTC) tumors larger than 1 cm, driven by the hypothesis that overall risk assessment outweighs absolute tumor size in surgical decision-making.
Methods:
This protocol aims to address whether limiting AS to tumors smaller than 1 cm may result in unnecessary surgeries for low-risk PTCs detected during their rapid initial growth phase. By expanding the AS criteria to include tumors up to 1.5 cm, while simultaneously refining and standardizing the criteria for risk assessment and disease progression, we aim to minimize overtreatment and maintain rigorous monitoring to improve patient outcomes.
Conclusion
This study will contribute to optimizing AS guidelines and enhance our understanding of the natural course and appropriate management of low-risk PTCs. Additionally, MAeSTro-EXP involves a multinational collaboration between South Korea and Australia. This cross-country study aims to identify cultural and racial differences in the management of low-risk PTC, thereby enriching the global understanding of AS practices and their applicability across diverse populations.
4.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
5.Artificial Intelligence-Based Early Prediction of Acute Respiratory Failure in the Emergency Department Using Biosignal and Clinical Data
Changho HAN ; Yun Jung JUNG ; Ji Eun PARK ; Wou Young CHUNG ; Dukyong YOON
Yonsei Medical Journal 2025;66(2):121-130
Purpose:
Early identification of patients at risk for acute respiratory failure (ARF) could help clinicians devise preventive strategies. Analyzing biosignals with artificial intelligence (AI) can uncover hidden information and variability within time series. We aimed to develop and validate AI models to predict ARF within 72 h after emergency department admission, primarily using highresolution biosignals collected within 4 h of arrival.
Materials and Methods:
Our AI model, built on convolutional recurrent neural networks, combines biosignal feature extraction and sequence modeling. The model was developed and internally validated with data from 5284 admissions [1085 (20.5%) positive for ARF], and externally validated using data from 144 admissions [7 (4.9%) positive for ARF] from another institution. We defined ARF as the application of advanced respiratory support devices.
Results:
Our AI model performed well in predicting ARF, achieving area under the receiver operating characteristic curve (AUROC) of 0.840 and 0.743 in internal and external validations, respectively. It outperformed the Modified Early Warning Score (MEWS) and XGBoost models built only with clinical variables. High predictive ability for mortality was observed, with AUROC up to 0.809. A 10% increase in AI prediction scores was associated with 1.44-fold and 1.42-fold increases in ARF risk and mortality risk, respectively, even after adjusting for MEWS and demographic variables.
Conclusion
Our AI model demonstrates high predictive accuracy and significant associations with clinical outcomes. Our AI model has the potential to promptly aid in triage decisions. Our study shows that using AI to analyze biosignals advances disease detection and prediction.
6.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
7.Artificial Intelligence-Based Early Prediction of Acute Respiratory Failure in the Emergency Department Using Biosignal and Clinical Data
Changho HAN ; Yun Jung JUNG ; Ji Eun PARK ; Wou Young CHUNG ; Dukyong YOON
Yonsei Medical Journal 2025;66(2):121-130
Purpose:
Early identification of patients at risk for acute respiratory failure (ARF) could help clinicians devise preventive strategies. Analyzing biosignals with artificial intelligence (AI) can uncover hidden information and variability within time series. We aimed to develop and validate AI models to predict ARF within 72 h after emergency department admission, primarily using highresolution biosignals collected within 4 h of arrival.
Materials and Methods:
Our AI model, built on convolutional recurrent neural networks, combines biosignal feature extraction and sequence modeling. The model was developed and internally validated with data from 5284 admissions [1085 (20.5%) positive for ARF], and externally validated using data from 144 admissions [7 (4.9%) positive for ARF] from another institution. We defined ARF as the application of advanced respiratory support devices.
Results:
Our AI model performed well in predicting ARF, achieving area under the receiver operating characteristic curve (AUROC) of 0.840 and 0.743 in internal and external validations, respectively. It outperformed the Modified Early Warning Score (MEWS) and XGBoost models built only with clinical variables. High predictive ability for mortality was observed, with AUROC up to 0.809. A 10% increase in AI prediction scores was associated with 1.44-fold and 1.42-fold increases in ARF risk and mortality risk, respectively, even after adjusting for MEWS and demographic variables.
Conclusion
Our AI model demonstrates high predictive accuracy and significant associations with clinical outcomes. Our AI model has the potential to promptly aid in triage decisions. Our study shows that using AI to analyze biosignals advances disease detection and prediction.
8.Gaps and Similarities in Research Use LOINC Codes Utilized in Korean University Hospitals: Towards Semantic Interoperability for Patient Care
Kuenyoul PARK ; Min-Sun KIM ; YeJin OH ; John Hoon RIM ; Shinae YU ; Hyejin RYU ; Eun-Jung CHO ; Kyunghoon LEE ; Ha Nui KIM ; Inha CHUN ; AeKyung KWON ; Sollip KIM ; Jae-Woo CHUNG ; Hyojin CHAE ; Ji Seon OH ; Hyung-Doo PARK ; Mira KANG ; Yeo-Min YUN ; Jong-Baeck LIM ; Young Kyung LEE ; Sail CHUN
Journal of Korean Medical Science 2025;40(1):e4-
Background:
The accuracy of Logical Observation Identifiers Names and Codes (LOINC) mappings is reportedly low, and the LOINC codes used for research purposes in Korea have not been validated for accuracy or usability. Our study aimed to evaluate the discrepancies and similarities in interoperability using existing LOINC mappings in actual patient care settings.
Methods:
We collected data on local test codes and their corresponding LOINC mappings from seven university hospitals. Our analysis focused on laboratory tests that are frequently requested, excluding clinical microbiology and molecular tests. Codes from nationwide proficiency tests served as intermediary benchmarks for comparison. A research team, comprising clinical pathologists and terminology experts, utilized the LOINC manual to reach a consensus on determining the most suitable LOINC codes.
Results:
A total of 235 LOINC codes were designated as optimal codes for 162 frequent tests.Among these, 51 test items, including 34 urine tests, required multiple optimal LOINC codes, primarily due to unnoted properties such as whether the test was quantitative or qualitative, or differences in measurement units. We analyzed 962 LOINC codes linked to 162 tests across seven institutions, discovering that 792 (82.3%) of these codes were consistent. Inconsistencies were most common in the analyte component (38 inconsistencies, 33.3%), followed by the method (33 inconsistencies, 28.9%), and properties (13 inconsistencies, 11.4%).
Conclusion
This study reveals a significant inconsistency rate of over 15% in LOINC mappings utilized for research purposes in university hospitals, underlining the necessity for expert verification to enhance interoperability in real patient care.
9.Gaps and Similarities in Research Use LOINC Codes Utilized in Korean University Hospitals: Towards Semantic Interoperability for Patient Care
Kuenyoul PARK ; Min-Sun KIM ; YeJin OH ; John Hoon RIM ; Shinae YU ; Hyejin RYU ; Eun-Jung CHO ; Kyunghoon LEE ; Ha Nui KIM ; Inha CHUN ; AeKyung KWON ; Sollip KIM ; Jae-Woo CHUNG ; Hyojin CHAE ; Ji Seon OH ; Hyung-Doo PARK ; Mira KANG ; Yeo-Min YUN ; Jong-Baeck LIM ; Young Kyung LEE ; Sail CHUN
Journal of Korean Medical Science 2025;40(1):e4-
Background:
The accuracy of Logical Observation Identifiers Names and Codes (LOINC) mappings is reportedly low, and the LOINC codes used for research purposes in Korea have not been validated for accuracy or usability. Our study aimed to evaluate the discrepancies and similarities in interoperability using existing LOINC mappings in actual patient care settings.
Methods:
We collected data on local test codes and their corresponding LOINC mappings from seven university hospitals. Our analysis focused on laboratory tests that are frequently requested, excluding clinical microbiology and molecular tests. Codes from nationwide proficiency tests served as intermediary benchmarks for comparison. A research team, comprising clinical pathologists and terminology experts, utilized the LOINC manual to reach a consensus on determining the most suitable LOINC codes.
Results:
A total of 235 LOINC codes were designated as optimal codes for 162 frequent tests.Among these, 51 test items, including 34 urine tests, required multiple optimal LOINC codes, primarily due to unnoted properties such as whether the test was quantitative or qualitative, or differences in measurement units. We analyzed 962 LOINC codes linked to 162 tests across seven institutions, discovering that 792 (82.3%) of these codes were consistent. Inconsistencies were most common in the analyte component (38 inconsistencies, 33.3%), followed by the method (33 inconsistencies, 28.9%), and properties (13 inconsistencies, 11.4%).
Conclusion
This study reveals a significant inconsistency rate of over 15% in LOINC mappings utilized for research purposes in university hospitals, underlining the necessity for expert verification to enhance interoperability in real patient care.
10.A nationwide survey on the curriculum and educational resources related to the Clinical Skills Test of the Korean Medical Licensing Examination: a cross-sectional descriptive study
Eun-Kyung CHUNG ; Seok Hoon KANG ; Do-Hoon KIM ; MinJeong KIM ; Ji-Hyun SEO ; Keunmi LEE ; Eui-Ryoung HAN
Journal of Educational Evaluation for Health Professions 2025;22(1):11-
Purpose:
The revised Clinical Skills Test (CST) of the Korean Medical Licensing Exam aims to provide a better assessment of physicians’ clinical competence and ability to interact with patients. This study examined the impact of the revised CST on medical education curricula and resources nationwide, while also identifying areas for improvement within the revised CST.
Methods:
This study surveyed faculty responsible for clinical clerkships at 40 medical schools throughout Korea to evaluate the status and changes in clinical skills education, assessment, and resources related to the CST. The researchers distributed the survey via email through regional consortia between December 7, 2023 and January 19, 2024.
Results:
Nearly all schools implemented preliminary student–patient encounters during core clinical rotations. Schools primarily conducted clinical skills assessments in the third and fourth years, with a simplified form introduced in the first and second years. Remedial education was conducted through various methods, including one-on-one feedback from faculty after the assessment. All schools established clinical skills centers and made ongoing improvements. Faculty members did not perceive the CST revisions as significantly altering clinical clerkship or skills assessments. They suggested several improvements, including assessing patient records to improve accuracy and increasing the objectivity of standardized patient assessments to ensure fairness.
Conclusion
During the CST, students’ involvement in patient encounters and clinical skills education increased, improving the assessment and feedback processes for clinical skills within the curriculum. To enhance students’ clinical competencies and readiness, strengthening the validity and reliability of the CST is essential.

Result Analysis
Print
Save
E-mail