1.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
2.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
3.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
4.Evaluation of health-related quality of life and performance in intestinal transplant and rehabilitation patients: a cross-sectional study
Eunju JANG ; Mi-hyeong KIM ; Jeong-kye HWANG ; Sun Cheol PARK ; Sang Seob YUN ; Myung Duk LEE ; Jae Hee CHUNG
Annals of Surgical Treatment and Research 2025;108(1):31-38
Purpose:
We aimed to evaluate health-related quality of life (HRQoL) in intestinal failure (IF) patients after different modes of intestinal rehabilitation.
Methods:
HRQoL was assessed using the generic 36-item Short Form Survey (SF-36, ver. 2) and visual analogue scale (VAS) in 6 different areas: diet, sleep, gastrointestinal (GI) symptoms, diarrhea, musculoskeletal pain, and other symptoms.
Results:
Twenty-two patients completed the questionnaires, of which 7 had received intestinal transplant (ITx), 9 were continuing home total parenteral nutrition (HPN), and 6 had tapered off total parenteral nutrition (TPN). SF-36 physical component summary scores were highest in the ITx group (median, 65.6; interquartile range [IQR], 31.6–80.3) compared to the HPN (median, 48.4; IQR, 44.7–66.3) or tapered group (median, 54.2; IQR, 45.2–61.6). Mental component summary scores were lowest in the ITx group (median, 48.8; IQR, 37.1–63.6), compared to the TPN (median, 60.2; IQR, 41.6–78.5) or tapered group (median, 51.0; IQR, 48.8–56.0). Differences were not significant in all items of the SF-36. VAS scores showed that patients in the ITx group showed the best results in diet (0.9), gastrointestinal (GI) symptoms (1.4), and musculoskeletal pain (2.4). There was a significant difference in sleep (P = 0.036), with the ITx (1.43) and HPN groups (1.33) showing better outcomes compared with the tapered group (4.67). Patients in the tapered group showed the least favorable results in all performance areas, except GI symptoms.
Conclusion
SF-36 did not show a significant difference between the ITx, HPN, and tapered groups, but VAS showed a significant difference in sleep between groups. Further studies, including serial data, will allow a better understanding of the effects of different modes of intestinal rehabilitation.
5.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
6.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
7.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
8.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
9.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
10.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.

Result Analysis
Print
Save
E-mail