2.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
4.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
6.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
8.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
9.Efficacy and Safety of Metformin and Atorvastatin Combination Therapy vs. Monotherapy with Either Drug in Type 2 Diabetes Mellitus and Dyslipidemia Patients (ATOMIC): Double-Blinded Randomized Controlled Trial
Jie-Eun LEE ; Seung Hee YU ; Sung Rae KIM ; Kyu Jeung AHN ; Kee-Ho SONG ; In-Kyu LEE ; Ho-Sang SHON ; In Joo KIM ; Soo LIM ; Doo-Man KIM ; Choon Hee CHUNG ; Won-Young LEE ; Soon Hee LEE ; Dong Joon KIM ; Sung-Rae CHO ; Chang Hee JUNG ; Hyun Jeong JEON ; Seung-Hwan LEE ; Keun-Young PARK ; Sang Youl RHEE ; Sin Gon KIM ; Seok O PARK ; Dae Jung KIM ; Byung Joon KIM ; Sang Ah LEE ; Yong-Hyun KIM ; Kyung-Soo KIM ; Ji A SEO ; Il Seong NAM-GOONG ; Chang Won LEE ; Duk Kyu KIM ; Sang Wook KIM ; Chung Gu CHO ; Jung Han KIM ; Yeo-Joo KIM ; Jae-Myung YOO ; Kyung Wan MIN ; Moon-Kyu LEE
Diabetes & Metabolism Journal 2024;48(4):730-739
Background:
It is well known that a large number of patients with diabetes also have dyslipidemia, which significantly increases the risk of cardiovascular disease (CVD). This study aimed to evaluate the efficacy and safety of combination drugs consisting of metformin and atorvastatin, widely used as therapeutic agents for diabetes and dyslipidemia.
Methods:
This randomized, double-blind, placebo-controlled, parallel-group and phase III multicenter study included adults with glycosylated hemoglobin (HbA1c) levels >7.0% and <10.0%, low-density lipoprotein cholesterol (LDL-C) >100 and <250 mg/dL. One hundred eighty-five eligible subjects were randomized to the combination group (metformin+atorvastatin), metformin group (metformin+atorvastatin placebo), and atorvastatin group (atorvastatin+metformin placebo). The primary efficacy endpoints were the percent changes in HbA1c and LDL-C levels from baseline at the end of the treatment.
Results:
After 16 weeks of treatment compared to baseline, HbA1c showed a significant difference of 0.94% compared to the atorvastatin group in the combination group (0.35% vs. −0.58%, respectively; P<0.0001), whereas the proportion of patients with increased HbA1c was also 62% and 15%, respectively, showing a significant difference (P<0.001). The combination group also showed a significant decrease in LDL-C levels compared to the metformin group (−55.20% vs. −7.69%, P<0.001) without previously unknown adverse drug events.
Conclusion
The addition of atorvastatin to metformin improved HbA1c and LDL-C levels to a significant extent compared to metformin or atorvastatin alone in diabetes and dyslipidemia patients. This study also suggested metformin’s preventive effect on the glucose-elevating potential of atorvastatin in patients with type 2 diabetes mellitus and dyslipidemia, insufficiently controlled with exercise and diet. Metformin and atorvastatin combination might be an effective treatment in reducing the CVD risk in patients with both diabetes and dyslipidemia because of its lowering effect on LDL-C and glucose.
10.Sex Differences in Chronic Cough Epidemiology: The Korean Cough Study Group
Jiyeon KANG ; Woo Jung SEO ; Jieun KANG ; Jung Gon KIM ; Sung Jun CHUNG ; Hyung Koo KANG ; Sung-Soon LEE ; Tai Joon AN ; Hyonsoo JOO ; Hyun LEE ; Youlim KIM ; Ina JEONG ; Jinkyeong PARK ; Sung-Kyoung KIM ; Jong-Wook SHIN ; Chin Kook RHEE ; Yee Hyung KIM ; Kyung Hoon MIN ; Ji-Yong MOON ; Deog Kyeom KIM ; Seung Hun JANG ; Kwang Ha YOO ; Jin Woo KIM ; Hyoung Kyu YOON ; Hyeon-Kyoung KOO
Journal of Korean Medical Science 2024;39(38):e273-
Background:
Chronic cough is a common symptom encountered by healthcare practitioners.The global prevalence of chronic cough is 9.6%, with a female predominance. The aim of our study is to reveal the sex differences in prevalence and severity of chronic cough in South Korea, stratified by age and etiology.
Methods:
This study included adult patients with chronic cough who were recruited from 19 respiratory centers in South Korea. Patients completed the cough numeric rating scale (NRS) and COugh Assessment Test (COAT) questionnaire to assess the severity and multidimensional impact of cough.
Results:
Among the 625 patients, 419 (67.0%) were females, with a male-to-female ratio of 1:2.03. The mean age was 49.4 years, and the median duration of cough was 12 weeks. The mean NRS and COAT scores were 5.5 ± 1.8 and 9.5 ± 3.6, respectively. Female patients were older (45.3 ± 15.4 vs. 51.6 ± 15.2, P < 0.001) and more likely to have asthma/cough variant asthma (CVA) (26.7% vs. 40.8%, P = 0.001) than male patients. There was no difference in the duration or severity of cough between sexes, regardless of the cause. The male-tofemale ratio was lower for upper airway cough syndrome (UACS), asthma/CVA, and gastroesophageal reflux disease (GERD), but not for eosinophilic bronchitis (EB) or unexplained cough. The mean age of female patients was higher in UACS and asthma/CVA, but not in EB, GERD, or unexplained cough. The majority (24.2%) fell within the age category of 50s. The proportion of females with cough increased with age, with a significant rise in the 50s, 60s, and 70–89 age groups. The severity of cough decreased in the 50s, 60s, and 70–89 age groups, with no significant sex differences within the same age group.
Conclusion
The sex disparities in prevalence and severity of cough varied significantly depending on the age category and etiology. Understanding the specific sex-based difference could enhance comprehension of cough-related pathophysiology and treatment strategies.

Result Analysis
Print
Save
E-mail