1.Erratum to "Investigating the Immune-Stimulating Potential of β-Glucan from Aureobasidium pullulans in Cancer Immunotherapy" Biomol Ther 32(5), 556-567 (2024)
Jae-Hyeon JEONG ; Dae-Joon KIM ; Seong-Jin HONG ; Jae-Hee AHN ; Dong-Ju LEE ; Ah-Ra JANG ; Sungyun KIM ; Hyun-Jong CHO ; Jae-Young LEE ; Jong-Hwan PARK ; Young-Min KIM ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(1):233-233
2.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
3.Advanced technique of biportal endoscopic transforaminal lumbar interbody fusion for revision surgery: a technical note
Young-Il KO ; Jin Young LEE ; Hun-Chul KIM ; Hyeon Guk CHO ; Jeong Woo PARK ; Sang-Ho HAN
Asian Spine Journal 2025;19(2):267-274
The application area of biportal endoscopic spine surgery (BESS) is gradually expanding. Compared with conventional fusion surgery, transforaminal interbody fusion (TLIF) using BESS (BESS-TLIF) has the advantages of less bleeding, minimal postoperative pain, and faster recovery. This technical note highlights its application in managing complex conditions such as scar tissue adhesion, altered anatomy, and implant removal, common in reoperations. The method focuses on precise dissection, endoscopic visualization, and careful tissue handling to ensure effective decompression and stabilization. Three representative cases, including reoperations for recurrent disc herniation, adjacent segment disease (ASD) following prior fusion, and ASD with nonunion of the prior fusion site requiring fusion extension, were described. All three cases exhibited clinical improvement following surgery. BESS is an effective and safe method for spinal revision surgery not only in simple decompression surgery but also in cases that required fusion surgery. As BESS is advancing, its role in complex spinal surgeries is expected to expand, potentially setting new standards in minimally invasive spine surgery.
4.Advanced technique of biportal endoscopic transforaminal lumbar interbody fusion for revision surgery: a technical note
Young-Il KO ; Jin Young LEE ; Hun-Chul KIM ; Hyeon Guk CHO ; Jeong Woo PARK ; Sang-Ho HAN
Asian Spine Journal 2025;19(2):267-274
The application area of biportal endoscopic spine surgery (BESS) is gradually expanding. Compared with conventional fusion surgery, transforaminal interbody fusion (TLIF) using BESS (BESS-TLIF) has the advantages of less bleeding, minimal postoperative pain, and faster recovery. This technical note highlights its application in managing complex conditions such as scar tissue adhesion, altered anatomy, and implant removal, common in reoperations. The method focuses on precise dissection, endoscopic visualization, and careful tissue handling to ensure effective decompression and stabilization. Three representative cases, including reoperations for recurrent disc herniation, adjacent segment disease (ASD) following prior fusion, and ASD with nonunion of the prior fusion site requiring fusion extension, were described. All three cases exhibited clinical improvement following surgery. BESS is an effective and safe method for spinal revision surgery not only in simple decompression surgery but also in cases that required fusion surgery. As BESS is advancing, its role in complex spinal surgeries is expected to expand, potentially setting new standards in minimally invasive spine surgery.
5.Erratum to "Investigating the Immune-Stimulating Potential of β-Glucan from Aureobasidium pullulans in Cancer Immunotherapy" Biomol Ther 32(5), 556-567 (2024)
Jae-Hyeon JEONG ; Dae-Joon KIM ; Seong-Jin HONG ; Jae-Hee AHN ; Dong-Ju LEE ; Ah-Ra JANG ; Sungyun KIM ; Hyun-Jong CHO ; Jae-Young LEE ; Jong-Hwan PARK ; Young-Min KIM ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(1):233-233
6.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
7.Advanced technique of biportal endoscopic transforaminal lumbar interbody fusion for revision surgery: a technical note
Young-Il KO ; Jin Young LEE ; Hun-Chul KIM ; Hyeon Guk CHO ; Jeong Woo PARK ; Sang-Ho HAN
Asian Spine Journal 2025;19(2):267-274
The application area of biportal endoscopic spine surgery (BESS) is gradually expanding. Compared with conventional fusion surgery, transforaminal interbody fusion (TLIF) using BESS (BESS-TLIF) has the advantages of less bleeding, minimal postoperative pain, and faster recovery. This technical note highlights its application in managing complex conditions such as scar tissue adhesion, altered anatomy, and implant removal, common in reoperations. The method focuses on precise dissection, endoscopic visualization, and careful tissue handling to ensure effective decompression and stabilization. Three representative cases, including reoperations for recurrent disc herniation, adjacent segment disease (ASD) following prior fusion, and ASD with nonunion of the prior fusion site requiring fusion extension, were described. All three cases exhibited clinical improvement following surgery. BESS is an effective and safe method for spinal revision surgery not only in simple decompression surgery but also in cases that required fusion surgery. As BESS is advancing, its role in complex spinal surgeries is expected to expand, potentially setting new standards in minimally invasive spine surgery.
8.Erratum to "Investigating the Immune-Stimulating Potential of β-Glucan from Aureobasidium pullulans in Cancer Immunotherapy" Biomol Ther 32(5), 556-567 (2024)
Jae-Hyeon JEONG ; Dae-Joon KIM ; Seong-Jin HONG ; Jae-Hee AHN ; Dong-Ju LEE ; Ah-Ra JANG ; Sungyun KIM ; Hyun-Jong CHO ; Jae-Young LEE ; Jong-Hwan PARK ; Young-Min KIM ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(1):233-233
9.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
10.Catalpa bignonioides extract improves exercise performance through regulation of growth and metabolism in skeletal muscles
Hoibin Jeong ; Dong-joo Lee ; Sung-Pil Kwon ; SeonJu Park ; Song-Rae Kim ; Seung Hyun Kim ; Jae-Il Park ; Deug-chan Lee ; Kyung-Min Choi ; WonWoo Lee ; Ji-Won Park ; Bohyun Yun ; Su-Hyeon Cho ; Kil-Nam Kim
Asian Pacific Journal of Tropical Biomedicine 2024;14(2):47-54
Objective: To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo. Methods: Cell viability was measured using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay. Cell proliferation was assessed using a 5-bromo-2’-deoxyuridine (BrdU) assay kit. Western blot analysis was performed to determine the protein expressions of related factors. The effects of Catalpa bignonioides extract were investigated in mice using the treadmill exhaustion test and whole-limb grip strength assay. Chemical composition analysis was performed using high-performance liquid chromatography (HPLC). Results: Catalpa bignonioides extract increased the proliferation of C2C12 mouse myoblasts by activating the Akt/mTOR signaling pathway. It also induced metabolic changes, increasing the number of mitochondria and glucose metabolism by phosphorylating adenosine monophosphate-activated protein kinase. In an in vivo study, the extract-treated mice showed improved motor abilities, such as muscular endurance and grip strength. Additionally, HPLC analysis showed that vanillic acid may be the main component of the Catalpa bignonioides extract that enhanced muscle strength. Conclusions: Catalpa bignonioides improves exercise performance through regulation of growth and metabolism in skeletal muscles, suggesting its potential as an effective natural agent for improving muscular strength.

Result Analysis
Print
Save
E-mail