2.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
4.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
6.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
8.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
9.Clinical characteristics of toxoplasmosis patients in Korea: A retrospective study using health insurance review and assessment service data and electronic medical records
Do-Won HAM ; Bong-Kwang JUNG ; Ji-Hun SHIN ; Yong Joon KIM ; Kyoung Yul SEO ; Seung Mi LEE ; Jae Hyoung IM ; Jeong-Ran KWON ; Ho-Sung LEE ; Kyung-Won HWANG ; Eun-Hee SHIN
Parasites, Hosts and Diseases 2024;62(4):424-437
This study aimed to elucidate the clinical characteristics of patients diagnosed with toxoplasmosis in Korea. We collected and analyzed the specific research data of 5,917 patients from the Health Insurance Review and Assessment (HIRA; 2007–2020) and 533 electronic medical records (EMRs; 2003–2021) of Korean patients. The HIRA data showed that toxoplasmosis is an endemic disease that occurs constantly in Korea, with a large proportion of patients complaining of ocular symptoms. Of the 533 patients for whom EMR data were available, 54.6% were diagnosed with toxoplasmosis; ocular toxoplasmosis (35.7%), congenital toxoplasmosis (4.7%), cerebral toxoplasmosis (4.1%), pulmonary toxoplasmosis (0.4%), and toxoplasma hepatitis (0.6%), in order of frequency. In ocular cases, 54.4% of the patients had diverse ocular pathologies. Toxoplasmosis in Korea is characterized by a high frequency of ocular symptoms, most patients are adults, and 51.8% of patients with seropositivity were positive for IgG, suggesting prior infection. This study highlights that patients with ocular symptoms are included in the major diagnosis group for acquired toxoplasmosis in Korea.
10.Clinical characteristics of toxoplasmosis patients in Korea: A retrospective study using health insurance review and assessment service data and electronic medical records
Do-Won HAM ; Bong-Kwang JUNG ; Ji-Hun SHIN ; Yong Joon KIM ; Kyoung Yul SEO ; Seung Mi LEE ; Jae Hyoung IM ; Jeong-Ran KWON ; Ho-Sung LEE ; Kyung-Won HWANG ; Eun-Hee SHIN
Parasites, Hosts and Diseases 2024;62(4):424-437
This study aimed to elucidate the clinical characteristics of patients diagnosed with toxoplasmosis in Korea. We collected and analyzed the specific research data of 5,917 patients from the Health Insurance Review and Assessment (HIRA; 2007–2020) and 533 electronic medical records (EMRs; 2003–2021) of Korean patients. The HIRA data showed that toxoplasmosis is an endemic disease that occurs constantly in Korea, with a large proportion of patients complaining of ocular symptoms. Of the 533 patients for whom EMR data were available, 54.6% were diagnosed with toxoplasmosis; ocular toxoplasmosis (35.7%), congenital toxoplasmosis (4.7%), cerebral toxoplasmosis (4.1%), pulmonary toxoplasmosis (0.4%), and toxoplasma hepatitis (0.6%), in order of frequency. In ocular cases, 54.4% of the patients had diverse ocular pathologies. Toxoplasmosis in Korea is characterized by a high frequency of ocular symptoms, most patients are adults, and 51.8% of patients with seropositivity were positive for IgG, suggesting prior infection. This study highlights that patients with ocular symptoms are included in the major diagnosis group for acquired toxoplasmosis in Korea.

Result Analysis
Print
Save
E-mail