1.STING-STAT6 Signaling PathwayPromotes IL-4+ and IFN-α+ FibroticT Cell Activation and Exacerbates Scleroderma in SKG Mice
Kun Hee LEE ; Jin Seok WOO ; Ha Yeon JEONG ; Jeong Won CHOI ; Chul Hwan BANG ; Jeehee YOUN ; Sung-Hwan PARK ; Mi-La CHO
Immune Network 2024;24(5):e37-
Systemic sclerosis (SS) is an autoimmune disease and pathological mechanisms of SS are unclear. In this study, we investigated the role of T cells in the progression of SS using SKG mice and humanized mice. SKG mice have a spontaneous point mutation in ZAP70. We induced scleroderma in SKG mice and a humanized SS mouse model to assess whether T cell-mediated immune responses induce SS. As a result, we found increased dermal thickness, fibrosis, and lymphocyte infiltration in skin tissue in SKG SS mice compared to BALB/c mice (control). Also, blood cytokine level, including IL-4- and IFN-α which are produced by CD4+ T cells via STIM1/STING/STAT6/IRF3 signaling pathways, were increased in SKG mice. Interestingly, skin fibrosis was reduced by inhibiting STING pathway in skin fibroblast.Next, we demonstrated the pathophysiological role of IL-4 and IFN-α in skin fibrosis using a humanized SS mouse model and found increased IL-4- and IFN-α-producing CD4+ T cells and fibrosis. In this study, we found that STING-induced production of IL-4- and type I IFN by CD4+ T cells is a key factor in mouse model and humanized mouse model of SS. Our findings suggest that the STING/STAT6/IRF3 signaling pathways are potential therapeutic targets in SS.
2.Contribution of long-lived plasma cells to antibody-mediated allograft rejection
Clinical Transplantation and Research 2024;38(4):341-353
Persistent alloantigens derived from allograft tissues can be recognized by the host’s alloreactive immune system. This process enables cognate B cells to differentiate into plasma cells, which secrete donor-specific antibodies that are key drivers of antibody-mediated allograft rejection. A subset of these plasma cells can survive for extended periods in a suitable survival niche and mature into long-lived plasma cells (LLPCs), which are a cellular component of humoral memory. The current understanding of LLPCs is limited due to their scarcity, heterogeneity, and absence of unique markers.However, accumulating evidence indicates that LLPCs, unlike conventional short-lived plasma cells, can respond to extrinsic signals from their survival niches and can resist cell death associated with intracellular stress through cell-intrinsic mechanisms. Notably, they are refractory to traditional immunosuppressants and B cell depletion therapies. This resistance, coupled with their longevity, may explain why current treatments targeting antibody-mediated rejection are often ineffective. This review offers insights into the biology of LLPCs and discusses ongoing therapeutic trials that target LLPCs in the context of antibody-mediated allograft rejection.
3.Contribution of long-lived plasma cells to antibody-mediated allograft rejection
Clinical Transplantation and Research 2024;38(4):341-353
Persistent alloantigens derived from allograft tissues can be recognized by the host’s alloreactive immune system. This process enables cognate B cells to differentiate into plasma cells, which secrete donor-specific antibodies that are key drivers of antibody-mediated allograft rejection. A subset of these plasma cells can survive for extended periods in a suitable survival niche and mature into long-lived plasma cells (LLPCs), which are a cellular component of humoral memory. The current understanding of LLPCs is limited due to their scarcity, heterogeneity, and absence of unique markers.However, accumulating evidence indicates that LLPCs, unlike conventional short-lived plasma cells, can respond to extrinsic signals from their survival niches and can resist cell death associated with intracellular stress through cell-intrinsic mechanisms. Notably, they are refractory to traditional immunosuppressants and B cell depletion therapies. This resistance, coupled with their longevity, may explain why current treatments targeting antibody-mediated rejection are often ineffective. This review offers insights into the biology of LLPCs and discusses ongoing therapeutic trials that target LLPCs in the context of antibody-mediated allograft rejection.
4.Contribution of long-lived plasma cells to antibody-mediated allograft rejection
Clinical Transplantation and Research 2024;38(4):341-353
Persistent alloantigens derived from allograft tissues can be recognized by the host’s alloreactive immune system. This process enables cognate B cells to differentiate into plasma cells, which secrete donor-specific antibodies that are key drivers of antibody-mediated allograft rejection. A subset of these plasma cells can survive for extended periods in a suitable survival niche and mature into long-lived plasma cells (LLPCs), which are a cellular component of humoral memory. The current understanding of LLPCs is limited due to their scarcity, heterogeneity, and absence of unique markers.However, accumulating evidence indicates that LLPCs, unlike conventional short-lived plasma cells, can respond to extrinsic signals from their survival niches and can resist cell death associated with intracellular stress through cell-intrinsic mechanisms. Notably, they are refractory to traditional immunosuppressants and B cell depletion therapies. This resistance, coupled with their longevity, may explain why current treatments targeting antibody-mediated rejection are often ineffective. This review offers insights into the biology of LLPCs and discusses ongoing therapeutic trials that target LLPCs in the context of antibody-mediated allograft rejection.
5.STING-STAT6 Signaling PathwayPromotes IL-4+ and IFN-α+ FibroticT Cell Activation and Exacerbates Scleroderma in SKG Mice
Kun Hee LEE ; Jin Seok WOO ; Ha Yeon JEONG ; Jeong Won CHOI ; Chul Hwan BANG ; Jeehee YOUN ; Sung-Hwan PARK ; Mi-La CHO
Immune Network 2024;24(5):e37-
Systemic sclerosis (SS) is an autoimmune disease and pathological mechanisms of SS are unclear. In this study, we investigated the role of T cells in the progression of SS using SKG mice and humanized mice. SKG mice have a spontaneous point mutation in ZAP70. We induced scleroderma in SKG mice and a humanized SS mouse model to assess whether T cell-mediated immune responses induce SS. As a result, we found increased dermal thickness, fibrosis, and lymphocyte infiltration in skin tissue in SKG SS mice compared to BALB/c mice (control). Also, blood cytokine level, including IL-4- and IFN-α which are produced by CD4+ T cells via STIM1/STING/STAT6/IRF3 signaling pathways, were increased in SKG mice. Interestingly, skin fibrosis was reduced by inhibiting STING pathway in skin fibroblast.Next, we demonstrated the pathophysiological role of IL-4 and IFN-α in skin fibrosis using a humanized SS mouse model and found increased IL-4- and IFN-α-producing CD4+ T cells and fibrosis. In this study, we found that STING-induced production of IL-4- and type I IFN by CD4+ T cells is a key factor in mouse model and humanized mouse model of SS. Our findings suggest that the STING/STAT6/IRF3 signaling pathways are potential therapeutic targets in SS.
6.Contribution of long-lived plasma cells to antibody-mediated allograft rejection
Clinical Transplantation and Research 2024;38(4):341-353
Persistent alloantigens derived from allograft tissues can be recognized by the host’s alloreactive immune system. This process enables cognate B cells to differentiate into plasma cells, which secrete donor-specific antibodies that are key drivers of antibody-mediated allograft rejection. A subset of these plasma cells can survive for extended periods in a suitable survival niche and mature into long-lived plasma cells (LLPCs), which are a cellular component of humoral memory. The current understanding of LLPCs is limited due to their scarcity, heterogeneity, and absence of unique markers.However, accumulating evidence indicates that LLPCs, unlike conventional short-lived plasma cells, can respond to extrinsic signals from their survival niches and can resist cell death associated with intracellular stress through cell-intrinsic mechanisms. Notably, they are refractory to traditional immunosuppressants and B cell depletion therapies. This resistance, coupled with their longevity, may explain why current treatments targeting antibody-mediated rejection are often ineffective. This review offers insights into the biology of LLPCs and discusses ongoing therapeutic trials that target LLPCs in the context of antibody-mediated allograft rejection.
7.STING-STAT6 Signaling PathwayPromotes IL-4+ and IFN-α+ FibroticT Cell Activation and Exacerbates Scleroderma in SKG Mice
Kun Hee LEE ; Jin Seok WOO ; Ha Yeon JEONG ; Jeong Won CHOI ; Chul Hwan BANG ; Jeehee YOUN ; Sung-Hwan PARK ; Mi-La CHO
Immune Network 2024;24(5):e37-
Systemic sclerosis (SS) is an autoimmune disease and pathological mechanisms of SS are unclear. In this study, we investigated the role of T cells in the progression of SS using SKG mice and humanized mice. SKG mice have a spontaneous point mutation in ZAP70. We induced scleroderma in SKG mice and a humanized SS mouse model to assess whether T cell-mediated immune responses induce SS. As a result, we found increased dermal thickness, fibrosis, and lymphocyte infiltration in skin tissue in SKG SS mice compared to BALB/c mice (control). Also, blood cytokine level, including IL-4- and IFN-α which are produced by CD4+ T cells via STIM1/STING/STAT6/IRF3 signaling pathways, were increased in SKG mice. Interestingly, skin fibrosis was reduced by inhibiting STING pathway in skin fibroblast.Next, we demonstrated the pathophysiological role of IL-4 and IFN-α in skin fibrosis using a humanized SS mouse model and found increased IL-4- and IFN-α-producing CD4+ T cells and fibrosis. In this study, we found that STING-induced production of IL-4- and type I IFN by CD4+ T cells is a key factor in mouse model and humanized mouse model of SS. Our findings suggest that the STING/STAT6/IRF3 signaling pathways are potential therapeutic targets in SS.
8.CCAAT/enhancer binding protein β Induces Post-Switched B Cells to Produce Blimp1 and Differentiate into Plasma Cells
Geonhee LEE ; Eunkyeong JANG ; Jeehee YOUN
Immune Network 2020;20(5):e42-
Long-lasting post-switched plasma cells (PCs) arise mainly from germinal center (GC) reactions, but little is known about the mechanism by which GC B cells differentiate into PCs. Based on our observation that the expression of the transcription factor CCAAT/ enhancer binding protein β (C/EPBβ) is associated with the emergence of post-switched PCs, we enquired whether a cell-autonomous function of C/EPBβ is involved in the program for PC development. To address this, we generated C/EPBβ-deficient mice in which the Cebpb locus was specifically deleted in B cells after transcription of the Ig γ1 constant gene segment (Cγ1).In response to in vitro stimulation, B cells from these Cebpbfl/flCγ1Cre/+ mice had defects in the induction of B lymphocyte-induced maturation protein 1 (Blimp1) and the formation of IgG1 +PCs, but not in proliferation and survival. At steady state, the Cebpbfl/flCγ1Cre/+ mice had reduced serum IgG1 titers but normal IgG2c and IgM titers. Moreover, upon immunization with T-dependent Ag, the mice produced reduced levels of Ag-specific IgG1 Ab, and were defective in the production of Ag-specific IgG1 Ab-secreting cells. These results suggest that a cellautonomous function of C/EPBβ is crucial for differentiation of post-switched GC B cells into PCs through a Blimp1-dependent pathway.
9.Autoantibody-Mediated Dysfunction of Salivary Glands Leads to Xerostomia in SKG Mice
Suk San CHOI ; Eunkyeong JANG ; Kiseok JANG ; Sung Jun JUNG ; Kyung Gyun HWANG ; Jeehee YOUN
Immune Network 2019;19(6):44-
Sjögren's syndrome (SS) is a chronic heterogeneous disease that mainly affects exocrine glands, leading to sicca syndromes such as xerostomia. Despite the second highest prevalence rate among systemic autoimmune diseases, its pathophysiology remains largely unknown. Here we report that SKG mice, a cardinal model of Th17 cell-mediated arthritis, also develop a secondary form of SS-like disorder upon systemic exposure to purified curdlan, a type of β-glucan. The reduced production of saliva was not caused by focal immune cell infiltrates but was associated with IgG deposits in salivary glands. Sera from curdlan-injected SKG mice contained elevated titers of IgG (predominantly IgG1), autoantibody to the muscarinic type 3 receptor (M3R) and inhibited carbachol-induced Ca2+ signaling in salivary acinar cells. These results suggest that the Th17 cells that are elicited in SKG mice promote the production of salivary gland-specific autoantibodies including anti-M3R IgG; the antibodies are then deposited on acinar cells and inhibit M3R-mediated signaling required for salivation, finally leading to hypofunction of the salivary glands. This type II hypersensitivity reaction may explain the origin of secondary SS occurring without focal leukocyte infiltrates.
Acinar Cells
;
Animals
;
Antibodies
;
Arthritis
;
Autoantibodies
;
Autoimmune Diseases
;
Exocrine Glands
;
Hypersensitivity
;
Immunoglobulin G
;
Leukocytes
;
Mice
;
Prevalence
;
Saliva
;
Salivary Glands
;
Salivation
;
Sjogren's Syndrome
;
Th17 Cells
;
Xerostomia
10.Aged Sanroque Mice Spontaneously Develop Sjögren's Syndrome-like Disease
Suk San CHOI ; Eunkyeong JANG ; Yeon Kyung OH ; Kiseok JANG ; Mi La CHO ; Sung Hwan PARK ; Jeehee YOUN
Immune Network 2019;19(1):e7-
Sjögren's syndrome (SS) is a chronic inflammatory autoimmune disorder that affects mainly salivary and lacrimal glands, but its cause remains largely unknown. Clinical data indicating that SS occurs in a substantial proportion of patients with lupus points to common pathogenic mechanisms underlying the two diseases. To address this idea, we asked whether SS develops in the lupus-prone mouse strain sanroque (SAN). Owing to hyper-activation of follicular helper T (Tfh) cells, female SAN mice developed lupus-like symptoms at approximately 20 wk of age but there were no signs of SS at that time. However, symptoms typical of SS were evident at approximately 40 wk of age, as judged by reduced saliva flow rate, sialadenitis, and IgG deposits in the salivary glands. Increases in serum titers of SS-related autoantibodies and numbers of autoantibody-secreting cells in cervical lymph nodes (LNs) preceded the pathologic manifestations of SS and were accompanied by expansion of Tfh cells and their downstream effector cells. Thus, our results suggest that chronic dysregulation of Tfh cells in salivary gland-draining LNs is sufficient to drive the development of SS in lupus-prone mice.
Animals
;
Autoantibodies
;
Autoimmunity
;
Disease Models, Animal
;
Female
;
Humans
;
Immunoglobulin G
;
Lacrimal Apparatus
;
Lupus Erythematosus, Systemic
;
Lymph Nodes
;
Mice
;
Saliva
;
Salivary Glands
;
Sialadenitis

Result Analysis
Print
Save
E-mail